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LETTER FROM THE
EDITOR

In the margin we celebrate color and symmetry. How many mathemati-
cal stories can you find in this graphic?

What? Is MATHEMATICS MAGAZINE in color? Evidently so, at least
for the first few pages of this issue. It is an experiment, and it isn’t free.
Feedback from readers and prospective authors would be greatly appre-
ciated (mathmag@maa.org). (Full color is now available in the MAA’s
online publications, including the online version of this MAGAZINE.)

Color enlivens the illustrations in the first article, on how to draw
triangles, by Curtis D. Bennett, Blake Mellor, and Patrick D. Shanahan.
Perhaps you already know how to draw triangles, but these authors are
working in the Thurston model of the hyperbolic plane, and they use
their triangles to present a version of Pick’s theorem in that environment.

The other articles add color in your imagination. Two separate arti-
cles relate group theory to Sudoku puzzles. Carlos Arcos, Gary Brook-
field, and Mike Krebs show us how to use symmetry groups to count
Sudoku grids, and Jennifer Carmichael, Keith Schloeman, and Michael
B. Ward ask when a group multiplication table is itself a Sudoku. Kent
Morrison uses multiplication tables in his imaginary casino to rediscover
a famous probability distribution. (Where else in the issue are multipli-
cation tables and Sudoku mentioned?)

In the Notes Section, Aaron Melman helps us find eigenvalues and
Dimitrios Kodokostas helps us find triangle equalizers. In News and
Letters you can find a report of the 38th USAMO.

Sixty years of quickies. This issue’s Problems section features Quickie
#1000. Quickies are one of the distinctive features of the Problems sec-
tion that set it apart from other problems columns. We publish two
quickies per issue, five issues per volume, and this is Volume 83, so
anyone can calculate that the first quickie appeared in Volume. . . Oops.
Apparently the rate has varied.

Actually, Quickie #1 appeared in Volume 23, March–April, 1950.
Regular problem numbers were restarted at #1 in 1947 when the Mag-
azine took on its present name. You can read more about the history of
the MAGAZINE and its Problem section in our April, 2005 issue, or in
the MAA book, The Harmony of the World. You can see the first quickie
on page 148 of this issue.

Walter Stromquist, Editor
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ARTICLES

Drawing a Triangle on the Thurston Model
of Hyperbolic Space

CURTIS D. BENNETT
Loyola Marymount University

Los Angeles, CA 90045
cbennett@lmu.edu

BLAKE MELLOR
Loyola Marymount University

Los Angeles, CA 90045
bmellor@lmu.edu

PATRICK D. SHANAHAN
Loyola Marymount University

Los Angeles, CA 90045
pshanahan@lmu.edu

Experiments with a common physical model of the hyperbolic plane presented the
authors with surprising difficulties in drawing a large triangle. Understanding these
difficulties led to an intriguing exploration of the geometry of the Thurston model of
the hyperbolic plane. In this exploration we encountered topics ranging from combi-
natorics and Pick’s Theorem to differential geometry and the Gauss-Bonnet Theorem.

The journey began when one of the authors was teaching a class of non-mathematics
majors using Ed Burger and Michael Starbird’s popular text The Heart of Mathematics
[1]. In section 4.6, Burger and Starbird describe how to build a model of the hyperbolic
plane out of paper by taping together equilateral triangles with 7 triangles around each
vertex; FIGURE 1 shows the result. They then ask the following question:

Figure 1 The Thurston model of the hyperbolic plane

Math. Mag. 83 (2010) 83–99. doi:10.4169/002557010X482853. c© Mathematical Association of America
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Draw a big triangle upon your floppy sheet (the model) spanning several of the
pieces by flattening a section on the ground and drawing a straight line, then
flattening another section and drawing another straight line, and then completing
the triangle in the same way. There is a lot of squashing involved. Now measure
the three angles and add them up. What do you get? (section 4.6, problem #18)

This question is unexpectedly difficult to answer and raises interesting questions
about the relationship between the model and the hyperbolic plane. For example, what
is meant by a “big” triangle? And what is a “straight line”?

The model described by Burger and Starbird was initially suggested by William
Thurston as a way for people to get a feeling for hyperbolic space, and has appeared in
several books aimed at a general audience, in particular, The Shape of Space by Jeffrey
Weeks [5, p. 151] and The Heart of Mathematics [1, p. 301]. We encourage readers to
construct their own models, both to verify for themselves the results in this paper, and
simply because they are very cool toys!

Notice that the Thurston model shown in FIGURE 1 cannot be flattened onto the
plane because we are forcing 7π/3 radians to fit around each vertex rather than the
2π radians allowed in the Euclidean plane. However, there are strips of equilateral
triangles in the model that can be flattened onto the Euclidean plane, as shown in
FIGURE 2.

Figure 2 A strip of equilateral triangles in the Euclidean plane

When Burger and Starbird ask us to draw a “big” triangle, it is natural to think in
terms of area. However, we can draw a triangle with as much area as we wish within
one of these Euclidean strips of triangles, and the result will have an angle sum of π .
Since the purpose of the model is to illustrate the differences between Euclidean and
hyperbolic geometry, this is clearly not what was meant. Instead of looking at area per
se, we want to draw a triangle containing a large number of the vertices of the model
in its interior.

Before we can begin to draw any kind of triangle, big or small, we need to know
what we mean by straight lines in the model. Burger and Starbird suggest we should
“flatten a section [of the model] on the ground” and draw a straight line on this flattened
section. But, then, what of a line that runs along the sides of one of the Euclidean strips
shown in FIGURE 2? This certainly seems like a straight line—and yet, since it passes
through vertices where the model cannot be flattened without folding the model onto
itself, they cannot be drawn as Burger and Starbird describe. How should we resolve
this? Answering this questions leads to some beautiful mathematics, including the
Gauss-Bonnet Theorem relating the area of a hyperbolic triangle to the sum of its
angles.

Drawing lines in Thurston models

Before we dive into the nitty gritty of drawing lines and triangles, we need to ad-
dress to what extent the Thurston model actually models hyperbolic space. It might
be better to say that it is an approximate model, in the same way that an icosahedron
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is an approximate model of the sphere. It is most natural to look at the geometry on
the Thurston model induced by its embedding as a surface in R

3; however, this ge-
ometry does not strictly satisfy the axioms of hyperbolic geometry (or even incidence
geometry!). Alternatively, we can define a map from an actual hyperbolic plane to the
Thurston model, and use this map to define the geometry of the model; this results in a
different measure of distance, and hence in different lines and polygons. We are often
interested in comparing these two perspectives. The “natural” geometry is easier to use
in a classroom (as long as we place certain restrictions), so we begin from that point of
view by defining Thurston lines (these are the lines imagined by Burger and Starbird).
In subsequent sections we will define the correspondence between the Thurston model
and a standard model of hyperbolic space, the Poincaré disk model, and use it to define
a different set of lines, the hyperbolic lines. By comparing these two notions of lines
we will see that this natural geometry, while not the same as the hyperbolic geometry,
does provide a useful approximation.

Thurston lines The standard method to define a line in a space is as the shortest path
(or geodesic) between any two points of the space. In the Thurston model, measuring
distance as a surface embedded in R

3, we will call these lines Thurston lines. This def-
inition fits in well with the Burger-Starbird problem, as a line on a “flattened section”
of the model would be a geodesic. Our definition of Thurston lines will not include
all geodesics. The reader is encouraged to think about complications that occur when
geodesics lie in sections of the model that cannot be flattened.

We begin by defining some key terms. A model triangle will denote one of the
Euclidean triangles. Two model triangles are adjacent if they share an edge (meaning
they have been glued together along an edge). A model vertex is a vertex of any model
triangle. Intuitively, a Thurston line will have two properties: It never passes through a
model vertex, and when it passes through two adjacent triangles, its restriction to the
union of the triangles is a Euclidean line segment, as in FIGURE 3. These properties
guarantee that a Thurston line lies in a section of the model that can be flattened.

We now formally define a Thurston line to be a set of points � such that

1. The restriction of � to any model triangle T is either empty or a line segment of T
containing a no vertex of T .

2. If T1 and T2 are adjacent triangles sharing edge AB, with � ∩ AB = C , Xi �= C
and Xi ∈ � ∩ Ti for i = 1, 2, then ∠X1C A ∼= ∠X2C B.

�

T1

T2

A

X1

X2C

B

Figure 3 The Thurston line segment X1X2 is the restriction of a Thurston line � to adja-
cent triangles T1 and T2

A Thurston angle is now defined naturally as an angle formed by two intersecting
Thurston lines. Since the rays of a Thurston angle are subsets of Thurston lines, the
vertex of a Thurston angle is not a model vertex. Thus, any Thurston angle agrees
locally with a Euclidean angle that is inside either a model triangle or two adjacent
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model triangles, and we define the measure of a Thurston angle to be its Euclidean
measure. Define a Thurston triangle as the figure bounded by three Thurston lines.

The Burger-Starbird question can now be rephrased as asking us to draw a Thurston
triangle with at least one model vertex in its interior and then find the sum of its angles.
Curiously, at most two model vertices can lie in the interior of a Thurston triangle, as
we will show.

Drawing large Thurston triangles We now turn to the question of how “big”
triangles in our geometry can be, by which we mean how many model vertices they
may contain. Suppose first that we have a Thurston triangle in our geometry. That is,
we have points A, B, and C such that each of AB, BC , and AC lies on a piece of the
space that can be flattened.

The model triangles partition the interior of �ABC into a collection of complete
model triangles and pieces of model triangles. As some of these pieces may be quadri-
laterals, we further triangulate the pieces by adding additional edges (but no new ver-
tices). This gives a triangulation of �ABC in which every triangle lies on a flat region
of the model, and all the vertices are either model vertices in the interior, or non-model
vertices on the boundary. Since all of the triangles in the triangulation are Euclidean,
they must each have angle sum of π radians.

To count these triangles, we use Euler’s formula for a triangulation of a topological
disk: V − E + F = 1, where V is the number of vertices, E the number of edges, and
F the number of faces in the triangulation. We can write V = 3 + b + m, counting the
three points A, B, and C , the b additional vertices on the edges AB, BC , and AC , and
the m internal model vertices. A standard combinatorial argument shows that the total
number of edges in the triangulation is

E = 3F + b + 3

2
.

Substituting this into Euler’s Formula and solving for F yields

F = 1 + b + 2m.

Since every triangle has an angle sum of π , the sum of all the angles in the triangulation
is π F = π(1 + b + 2m). On the other hand, the angles around each boundary vertex
(excepting A, B, and C) sum to π and the angles around each model vertex sum to
7π/3. So we have two ways of computing the sum of the angles in the triangulation,
producing the equation

π(1 + b + 2m) = ∠A + ∠B + ∠C + πb + 7π

3
m.

Therefore

∠A + ∠B + ∠C = π
(

1 − m

3

)
,

and we have established the following proposition.

PROPOSITION 1. Any Thurston triangle �ABC has an angle sum equal to
π(1 − m/3) radians, where m denotes the number of model vertices in the interior of
�ABC.

Since any Thurston triangle must have angles with positive measure, it follows that
any Thurston triangle can have at most two model vertices on its interior. A triangle
containing two model vertices is shown in FIGURE 4.
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Figure 4 A triangle in the Thurston model enclosing two model vertices

A mapping between the Poincaré and Thurston models Although Thurston lines
allow us to get a feel for the curvature of hyperbolic space, they are actually not hy-
perbolic lines. To define actual hyperbolic lines on the Thurston model, we define a
map to the model from one of the standard models of hyperbolic space. We will use
the standard Poincaré disk model for the hyperbolic plane, where the geodesics are the
diameters of the disk and the circular arcs that are perpendicular to the boundary of the
disk. We note that one can tile the Poincaré disk with equilateral triangles so that each
angle measures 2π/7, as shown in FIGURE 5. There is a one-to-one correspondence
between this tiling and the triangles of the Thurston model. We can use this correspon-
dence to define a bijective mapping from the Poincaré model of hyperbolic space to
the Thurston model. The details of this mapping are given in the next two paragraphs
for the interested reader, but only the fact of its existence is required for the rest of the
paper.

Figure 5 The Poincaré model tiled with equilateral triangles
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First, let S be the triangle centered at the origin in the triangulation of the Poincaré
disk shown in FIGURE 5. Next, pick a base triangle T in the Thurston model. We de-
fine a mapping f : S → T , starting with the Beltrami-Klein disk model of hyperbolic
geometry shown in FIGURE 6, where the geodesics are the Euclidean lines in the disk
[2, pp. 297–301]. We view both the Poincaré model and the Beltrami-Klein model as
unit disks in C. Then the function p(z) = 2z/(1 + |z|2) maps the Poincaré disk to the
Beltrami-Klein disk and takes S to a Euclidean equilateral triangle T ′ centered at the
origin of the Beltrami-Klein disk. We map T ′ to T via a linear rescaling l(z) = kz,
where k is a positive real constant. It is easy to verify that both p and l are invari-
ant under conjugation by any symmetry of an equilateral triangle. Thus the mapping
f : S → T defined by f = l ◦ p is also invariant under these symmetries. Note that
the mapping f takes hyperbolic line segments in S to Euclidean line segments in T .

Figure 6 The Beltrami-Klein model tiled with equilateral triangles

We now describe how to extend f to a mapping from the entire Poincaré disk to
the Thurston model. Given a triangle Si of the tiling of the Poincaré disk, there exists
an isometry g of the disk such that g(Si ) = S. We construct g by choosing a path of
triangles from Si to S in the triangulation, and composing reflections across the sides
of the triangles along the path. In the Thurston model, we can inductively reverse this
path of triangles and reflections to construct a mapping g̃−1 from T to a unique triangle
Ti in the Thurston model. For a point x of Si , we define φ(x) = g̃−1 ◦ f ◦ g(x). To see
that this is well defined, observe that if g′ were constructed using a different path from
Si to S, then g and g′ differ by a symmetry of the equilateral triangle S (and similarly
for g̃ and g̃′). Since f is invariant under these symmetries, φ is independent of the
choice of the path.

We have now defined our mapping φ between the models. Under this mapping we
have a natural set of lines in the Thurston model, namely the images of hyperbolic lines
under φ. These lines are only piecewise linear and may pass through model vertices.
While, on the face of it, the segments of these hyperbolic lines inside model triangles
are Euclidean line segments, the Euclidean distance between two points on the segment
is not the same as the hyperbolic distance.

However, there is a particular class of these lines that we will call special hyperbolic
lines, which are also geodesics in the Thurston model. The intersection of a special
hyperbolic line with a model triangle is either a side of the triangle or the Euclidean
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line segment from a vertex to the midpoint of the opposite side. When these special
hyperbolic lines pass through a model vertex, by symmetry there is the same Euclidean
angle sum (of 7π/6) on either side. FIGURE 7 shows that these special hyperbolic lines
arise naturally in the barycentric subdivision of the tiling of the hyperbolic plane by
equilateral triangles. We call the triangles of this subdivision the barycentric triangles.

Figure 7 The barycentric subdivision of the Poincaré model, showing the special hyper-
bolic lines

Drawing large special hyperbolic triangles We have answered Burger and Star-
bird’s question for Thurston triangles, but what if we take a triangle whose edges lie
on special hyperbolic lines? Such a triangle is the image of a hyperbolic triangle and,
unlike our earlier candidate for a large triangle, can have both internal and boundary
model vertices. Triangulate this hyperbolic triangle so that the interior of each small
triangle lies inside a model triangle. In this case, again, the angle measure around
model vertices in the interior is 7π/3. The angle sum around model vertices on the
boundary, however, is only half as much, 7π/6. As in Proposition 1, we discover the
following:

PROPOSITION 2. Any special hyperbolic triangle has angle sum equal to π(1 −
m/3 − n/6) radians, where m denotes the number of model vertices in the interior of
the triangle and n denotes the number of model vertices on the edges of the triangle
(not including the triangle vertices themselves).

Since the smallest angle we could realize on a special hyperbolic triangle has mea-
sure π/6, the proposition implies that the largest number of model vertices that could
lie on the triangle is 3 (with m = 0 and n = 3), and this can be realized, as shown in
FIGURE 8.

Deflections of hyperbolic lines in the Thurston model

We have defined hyperbolic lines in the Thurston model as the images of the geodesics
in the Poincaré model; however, aside from the special hyperbolic lines, we have not
discussed what these lines look like in our collection of taped-together triangles. As
we mentioned before, the image of a hyperbolic line in any model triangle it passes
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Figure 8 A special hyperbolic triangle in the Poincaré model with three model vertices
on the boundary

through is a Euclidean line segment, so the question is how the line bends as it passes
between adjacent triangles.

Consider the two equilateral triangles in the Poincaré model on the left in FIGURE

9, together with the hyperbolic line l, and the image of the triangles and the line under
φ in the Thurston model on the right.

r

β
μ

η
(s, 0)

(0, 0)

l

x
α

δ

φ(l)

φ(x)

Figure 9 Equilateral triangles and a hyperbolic line in the Poincaré model, and their
images in the Thurston model

The angles α and δ in the Thurston model are determined by the angles η and β

in the Poincaré model, which together are enough to determine where in the Poincaré
disk the hyperbolic line intersects the side of the triangle, as well as the angle of inter-
section. The formulas for α and δ are quite complicated, involving the derivatives of
the mappings φ and φ−1 at the point of intersection. We content ourselves with show-
ing these quantities graphically and leave the (somewhat lengthy) details as an exercise
for the reader, with brief answers posted at the MAGAZINE website.

In general, α + δ �= π ; we want to measure the deflection α + δ − π . A graph
showing the deflection as a function of the angles η and β appears in FIGURE 10,
where η ranges from 0 to 2π/3 and β range from 0 to π .
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Figure 10 The deflection as a function of the angles η and β

We can now make several interesting observations. First of all, the greatest deflec-
tion occurs at β = π/2, when the line is perpendicular to the side of the triangle.
FIGURE 11 shows the cross-section of the graph in FIGURE 10 with β = π/2.

π
6

π
3

π
2

2 π
3

–0.2

–0.1

0.1

0.2

η

Figure 11 The deflection when β = π/2

The figure shows that, as we approach a vertex, the line is deflected toward that
vertex, with a maximal deflection that approaches 0.283278 radians (about 16.23 de-
grees). The amount of the maximal deflection is determined by the equilateral triangle
we choose in the Poincaré disk; for the computations that led to FIGURE 11, we chose
the triangle centered at the origin with angles measuring π/7. If we had chosen a
larger equilateral triangle (decreasing the angle measures), then this maximal deflec-
tion would increase. For example, if the three angle measures were π/8, the maximal
deflection would be 0.469475 radians (about 26.9 degrees). As the angle measures
decrease, the number of triangles around each vertex in the corresponding Thurston
model increases, and the maximal deflection increases asymptotically toward π/3. The
reason is that, as the number of triangles around each vertex increases, a line passing
near one of the vertices will have to pass through more triangles. In the correspond-
ing Thurston model, this means the line will need to be deflected to bend around the
vertex. At a deflection of π/3, a line could be bent into a spiral around a vertex that
passes through all the triangles around that vertex.

The other interesting observation is that there is no deflection when the line passes
through the midpoint of a side (when η = π/3). So we see that the Thurston line in
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the Thurston model that connects the midpoints along a strip of triangles is also a true
hyperbolic line, meaning that it is the image of a hyperbolic line under the mapping
from the Poincaré model to the Thurston model.

We can also show that there is no deflection through midpoints directly by symmetry
considerations. Consider two adjacent model triangles �ABC and �BCD, and let x be
the midpoint of the shared edge BC , as shown in FIGURE 12. There is an isometry g
of the Poincaré model that takes φ−1(�ABC) to φ−1(�DCB) by rotating by π radians
around φ−1(x). Consider a point p on the edge AC and its image q = φgφ−1(p).
In the Poincaré model, g preserves lines through φ−1(x); since it exchanges φ−1(p)

and φ−1(q), the three points φ−1(p), φ−1(x) and φ−1(q) must lie on the same line in
the Poincaré model. The image of this line in the Thurston model is the pair of line
segments px and xq. However, since g is an isometry, we know that |px | = |qx |,
|Cx | = |Bx | and |pC | = |q B|, so by Side-Side-Side congruence the triangles �pxC
and �qx B are congruent. In particular, ∠pxC = ∠qx B, which means that the image
of the hyperbolic line is the Euclidean line between p and q. We conclude that there is
no deflection through the midpoint x .

α

α

A C

B D

x

p

q

Figure 12 The image pq of a hyperbolic line segment through the midpoint x

FIGURE 13 compares hyperbolic lines and Thurston lines in a segment of the
Thurston model. In each example, we have drawn both the Thurston line and the
hyperbolic line connecting two points in the Thurston model. We can see that when
the hyperbolic line is near the midpoints, it is almost straight and very close to the
Thurston line; however, when it is farther from the midpoints, the deflections are much
greater.

hyperbolic line Thurston line

Figure 13 Thurston lines and hyperbolic lines in the Thurston model
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Pick’s Theorem in Thurston’s model

We continue to explore our model by establishing a hyperbolic analog of Pick’s The-
orem, which gives a simple formula in Euclidean geometry for computing the area of
a polygon drawn on a unit square lattice (meaning that the area of one square of the
lattice is 1). It has many applications and generalizations [4, 3]. Here is the simplest
form of Pick’s Theorem: If a polygon P is drawn on a square lattice so that all the
vertices are lattice points, if there are i vertices inside the polygon, and if there are b
vertices on the boundary of the polygon, then the area of the polygon is

A(P) = i + b/2 − 1.

For example, the area of the polygon in FIGURE 14 is A = 5 + 7/2 − 1 = 7.5.

Figure 14 A polygon in a unit square lattice whose area is 7.5 units by Pick’s Theorem

The special hyperbolic lines of the Thurston model are the lines corresponding to
the barycentric subdivision of our triangulation of hyperbolic space. Notice that all
the small triangles formed by this subdivision are congruent, and so they all have the
same area α. Now, suppose we have a special hyperbolic figure R in the model, that is,
each side of R is made up of special hyperbolic lines and each vertex is either a model
vertex, a model center or a model midpoint as in FIGURE 15. We will also assume that
R is simply connected and hence a topological disk.

Figure 15 A special hyperbolic figure R (shaded) in the Poincaré model whose area is
27 units by Proposition 3
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The area of R is equal to α times the number of barycentric triangles contained in
R. So, if we want the area of R, we can count the number of barycentric triangles in R.
For this, we once again recall Euler’s formula for a tiling of a disk: V − E + F = 1.
Letting our lattice points be the centers, midpoints, and vertices of the model triangles
(so the lattice points are the vertices of the barycentric subdivision), we know that each
internal edge lies on exactly two faces, whereas each boundary edge lies on exactly one
face. Our faces are all barycentric triangles, so every face is bordered by three edges.
Letting Vb be the number of boundary vertices, Ei be the number of internal edges,
and Eb be the number of boundary edges, we have Eb = Vb and 2Ei + Eb = 3F , or
3F = 2E − Eb = 2E − Vb. Thus E = (1/2)(3F + Vb). Letting Vi denote the number
of internal vertices, we have

V − E + F = (Vb + Vi ) − (1/2)(3F + Vb) + F = 1.

Solving for F we obtain

F = 2Vi + Vb − 2.

But F is the number of barycentric triangles we have in the region R. Consequently,
we have proved:

PROPOSITION 3. Let R be a region bounded by special hyperbolic lines in the
Thurston model. Then the area of region R is given by

Area(R) = (2Vi + Vb − 2)α,

where α is the area of the barycentric triangle.

In fact, as others have noted, the hardest step in proving Pick’s theorem is to show
that any minimal triangle has area 1/2, and the result follows from Euler’s formula. In
our case, all minimal triangles are congruent, since they are images of the fundamental
domain for the group action on the hyperbolic plane, so our result is not too surprising.
Notice that in FIGURE 15, the region has 5 internal vertices and 19 boundary vertices,
so the area is (10 + 19 − 2)α = 27α; and indeed the region contains 27 triangles of
the barycentric subdivision.

Suppose we make a slightly different restriction on our region R, namely that all
the vertices must be model vertices. One quickly sees that there are only two minimal
triangles in this case, the model triangle and a triangle created by bisecting the quadri-
lateral formed by two adjacent model triangles. By symmetry arguments, both of these
triangles have area β = 6α. As a result, we have:

PROPOSITION 4. Let R be a region bounded by special hyperbolic lines in the
Thurston model, and let Vi denote the number of model vertices inside R and Vb denote
the number of model vertices on the boundary of R. Then the area of region R is given
by

Area(R) = (2Vi + Vb − 2)β,

where β is the area of the model triangle.

General Thurston models

Of course, Thurston’s model is just one way to model hyperbolic space; there are many
others that may allow some constructions to be performed more easily. It turns out that
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if we generalize the Thurston model, then we can make flatter models that allow for
a wider variety of triangles. We define a general Thurston model: Take any regular
triangulation of hyperbolic space given by an integer triple (n1, n2, n3), representing
the fundamental triangle with angle measures (2π/n1, 2π/n2, 2π/n3). We make one
additional requirement that if one of n1, n2, n3 is odd, then the other two are equal.
With these conditions, we can create a tiling of hyperbolic space with the property
that all angles about any vertex are congruent. Associated to this tiling, we take a
Euclidean triangle with angle measures a1, a2, and a3 such that n1a1 = n2a2 = n3a3.
Then we tape together n1 vertices of angle measure a1, n2 vertices of angle measure
a2, and n3 angles of measure a3. In the standard Thurston model, n1 = n2 = n3 = 7
and a1 = a2 = a3 = π/3.

The requirement n1a1 = n2a2 = n3a3 means that at each vertex of the model, the
excess in angle is the same. This means that the amount the paper must bend in order
for us to tape together the triangles is the same at each vertex; we might naively refer
to this as the curvature. In these general models you lose a little bit of regularity in
the sense that the vertices are not evenly spaced out, and it also becomes a little harder
to flatten out the space to draw a straight line. On the other hand, you can make the
curvature much smaller, allowing you to draw a greater variety of triangles. A simple
calculation shows that under these conditions

ai = n j nk

n1n2 + n2n3 + n1n3
π,

and that the excess angle glued around a vertex (called the angle excess) is

E(n1, n2, n3) =
(

n1n2n3

n1n2 + n2n3 + n1n3
− 2

)
π.

Of course, if 1/n1 + 1/n2 + 1/n3 > 1/2, we have too little angle around a vertex and
our triangle corresponds to a tiling of the sphere, so that (3, 3, 3) produces a tetra-
hedron, (4, 4, 4) produces an octahedron, and (5, 5, 5) produces an icosahedron. If
1/n1 + 1/n2 + 1/n3 = 1/2, then our triangle tiles Euclidean space. Thus, for our pur-
poses, we will restrict our attention to the case where 1/n1 + 1/n2 + 1/n3 < 1/2.
Noting that E(n1, n2, n3) is increasing in each ni , to find the minimal excess we can
simply check the smallest possible triples satisfying our conditions, namely (6, 6, 7),
(5, 8, 8), (4, 8, 10), and (4, 6, 14). The table below shows the excess for each of these,
along with the standard Thurston model (7, 7, 7).

(n1, n2, n3) E(n1, n2, n3)

(7, 7, 7) π/3
(6, 6, 7) π/10
(5, 8, 8) 2π/9
(4, 8, 10) 2π/19
(4, 6, 14) 2π/41

Thus, the smallest excess comes with the choice (4, 6, 14), shown in FIGURE 16
(FIGURE 17 gives a schematic you can copy to construct your own model). Although
this initially looks quite different from the Thurston model, it actually arises from its
barycentric subdivision. That is, this triangle corresponds to the minimal triangle we
saw before in the Thurston model!

The arguments that we gave before for the standard Thurston model carry over
directly to the new model, thus we have
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Figure 16 The (4, 6, 14) general Thurston model

A B

A

B

Figure 17 Schematic for the (4, 6, 14) general Thurston model, with the 14th triangle
around the vertex to be pasted in along edges A and B

PROPOSITION 5. In the general Thurston (n1, n2, n3) space, any Thurston triangle
�ABC has angle sum equal to π − E(n1, n2, n3)Vi where Vi denotes the number of
model vertices in the interior of �ABC. Moreover, if we take a special hyperbolic tri-
angle with model vertices, then the angle sum is π − (1/2)E(n1, n2, n3)(2Vi + Vb − 3)

where Vi is the number of model vertices lying in the interior of the triangle and Vb is
the number of model vertices on the boundary (including the vertices of the triangle).

So, in the (4, 6, 14)-model it is possible to draw a Thurston triangle containing as
many as 20 model vertices.

We also have an analog of Pick’s theorem for the general models:

PROPOSITION 6. Let R be a region bounded by (n1, n2, n3)-model hyperbolic
lines, and again let Vi denote the number of internal model vertices and Vb denote the
number of model vertices on the boundary of R. Then the area of region R is given by

Area(R) = (2Vi + Vb − 2)β,

where β is the area of the model triangle.
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Gauss-Bonnet Theorem

We can put Propositions 5 and 6 together to get a special case of the Gauss-Bonnet
formula, one of the most important theorems in differential geometry. Recall that the
Gauss-Bonnet formula states that the area A of a triangle in a surface of constant
curvature κ is given by the formula

−κ A = (π − a1 − a2 − a3),

where a1, a2, and a3 denote the measurements of the interior angles of the triangle. We
will derive a similar formula relating the area and angle sum of a special hyperbolic
triangle in the (n1, n2, n3)-model, whose vertices are all model vertices. This is partic-
ularly useful for the (4, 6, 14)-model (or any model where n1, n2, n3 are all distinct),
where all special hyperbolic triangles have model vertices.

From Proposition 6, the area of a special hyperbolic triangle with model vertices is
A = (2Vi + Vb − 2)β, where β is the area of the model triangle. On the other hand,
by Proposition 5, the sum of the angles a1, a2, and a3 of the triangle is given by

a1 + a2 + a3 = π − 1

2
E(n1, n2, n3)(2Vi + Vb − 3)

= π − 1

2
E(n1, n2, n3)

(
A

β
− 1

)

= π − E(n1, n2, n3)

2β
(A − β).

It now follows that we can write the area A in terms of the angles of the special hy-
perbolic triangle, the area of a model triangle, and the angle excess E(n1, n2, n3).
Specifically,

A = β + 2β

E(n1, n2, n3)
(π − a1 − a2 − a3),

where a1, a2, and a3 are the measures of the angles of the triangle. Here the curvature
of the model is approximated by the angle excess E(n1, n2, n3), which corresponds to
our observation that reducing the angle excess results in a flatter model.

We can derive a formula even closer to the Gauss-Bonnet formula by introducing a
new variable αi , defined below (for brevity, we let E = E(n1, n2, n3)):

ai =
(

1 + E

2π

)
αi or αi = ai

1 + E
2π

.

Then our expression for the area becomes

A = β + 2β

E
(π − a1 − a2 − a3)

= β + 2β

E

(
π −

(
1 + E

2π

)
(α1 + α2 + α3)

)

= β

(
1 + 2π

E
−

(
2

E
+ 1

π

)
(α1 + α2 + α3)

)
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= β

(
2

E
+ 1

π

)
(π − α1 − α2 − α3)

= β

(
2π + E

π E

)
(π − α1 − α2 − α3).

We have proved the following analogue of the Gauss-Bonnet Theorem:

PROPOSITION 7. Consider a special hyperbolic triangle with model vertices in the
general Thurston (n1, n2, n3)-model, where β is the area of a model triangle. Say that
the triangle has area A and angles a1, a2, a3. Then

−κ A = (π − α1 − α2 − α3),

where

αi = ai

1 + E
2π

, κ = − π E

β(2π + E)
and E = E(n1, n2, n3).

How can we interpret αi and κ? If we consider the preimage of our special hy-
perbolic triangle in the Poincaré model of hyperbolic space (as described earlier),
then the preimage of an angle a at one of the model vertices (with angle excess
E = E(n1, n2, n3)) is exactly

α = a
2π

2π + E
= a

1 + E
2π

This means that αi is just the true hyperbolic angle corresponding to the angle ai at a
model vertex.

To understand κ , consider the preimage of a model triangle in the hyperbolic surface
of constant curvature −1. This triangle has angles 2π/n1, 2π/n2, 2π/n3, so by the
classical Gauss-Bonnet Theorem, its area γ is

γ = −
(

2π

n1
+ 2π

n2
+ 2π

n3
− π

)

= π −
(

n1n2 + n2n3 + n1n3

n1n2n3

)
2π

= π − π

E + 2π
2π

= Eπ + 2π2 − 2π2

E + 2π
= Eπ

E + 2π
.

Then κ = −γ /β measures the ratio of the area of the preimage of the model triangle
in the surface with constant curvature −1 to the area of the model triangle. As the
model triangle gets larger (so the model is flatter), κ will get closer to 0, so κ is a
reasonable measure of the curvature of the model. Moreover, as the angle excess E
shrinks, κ will also get smaller. This means that the (4, 6, 14)-model, with the smallest
angle excess, gives a significantly flatter model, in which it is easier to follow the
hyperbolic lines and illustrate the Gauss-Bonnet theorem.

In a college geometry class, we have used these models to introduce students to cur-
vature and the Gauss-Bonnet theorem, without any of the difficult differential geome-
try required to prove the full Gauss-Bonnet Theorem. Students can be led to discover
for themselves one of the greatest theorems of mathematics, starting from no more
than paper triangles and tape!
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The game

You walk into a casino, and just inside the main entrance you see a new game to play—
the Multiplication Game. You sit at a table opposite the dealer and place your bet. The
dealer hits a button and from a slot in the table comes a slip of paper with a number
on it that you cannot see. You use a keypad to choose a number of your own—any
positive integer you like, with as many digits as you like. Your number is printed on
the slip of paper along with the product of the two numbers. The dealer shows you the
slip so that you can verify that the product is correct. You win if the first digit of the
product is 4 through 9; you lose if it is 1, 2, or 3. The casino pays even odds: for a
winning bet of one dollar the casino returns your dollar and one more. Should you stay
and play?

It looks tempting. You you have six winning digits and the casino has only three!
But being skeptical, you take a few minutes to calculate. You write the multiplication
table of the digits from one to nine. Of the 81 products you see that 44 of them begin
with 1, 2, or 3, and only 37 begin with 4 through 9. Suddenly, even odds do not seem
so attractive! You abandon the game and walk further into the casino.

In the next room you find another table with the same game, but better odds. This
table pays $1.25 for a winning one dollar bet. From your previous count you figure
that if the odds favor the casino by 44 : 37, then a fair payout would be 44/37 dollars
for a dollar bet; that is almost $1.19, and this table is offering more. Should you stay
and play?

You open your laptop and write a computer program to count the products of the two
digit numbers from 10 to 99. (You realize immediately that in this game multiplying
by 1, 2, . . . , 9 is the same as multiplying by 10, 20, . . . , 90, and so you leave out the
one digit numbers.) You find that of these 8100 products the casino has 4616 winners
and you have 3484. The ratio 4616/3484 is between 1.32 and 1.33, quite a bit more
than the $1.25 being offered. You move on, heading to the back of the casino where
you might find the best odds.

Far back in a dark corner you find a high stakes table with the Multiplication Game.
This one offers to pay $1.40 for a winning dollar bet with a minimum bet of $100.
Now you take a little time to think it over. You run your computer program to multiply
all the three digit numbers between 100 and 999 and find that 461698 of the products
are winners for the casino and 348302 are winners for you. The ratio 461698/348302
is 1.32557 to five decimal places. (The limit of this process, as the number of digits
increases, turns out to be about 1.32565.) The odds look good, so you stay to play.

You pick three digit numbers randomly. You win some and you lose some, but after
a hundred rounds you find yourself $450 poorer. Why are you losing? Obviously the
casino is not choosing its numbers in the same way you are. If it were, you would be
ahead about $320 by now. You wisely decide it is time to take a break from the table
and analyze the game more thoroughly.

Math. Mag. 83 (2010) 100–110. doi:10.4169/002557010X482862. c© Mathematical Association of America
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Applying game theory

The Multiplication Game was first described and analyzed by B. Ravikumar [10] as a
two-person game in which the players choose n-digit integers for a fixed n. He deter-
mined the limit of the optimal strategy as n goes to infinity.

In this article we have modified the game to allow positive integers of any length.
Note that it differs from most actual casino games (like blackjack or roulette) in that
both you and the casino can play strategically. The outcomes of all possible simulta-
neous choices of the two players can be represented by an infinite matrix A = (ai j )

whose rows and columns are indexed by the positive integers. The rows of the matrix
correspond to your choices and the columns correspond to the choices of the casino.
Looking at the outcome from your point of view, we put 1 into the matrix at the i j
location if you win and 0 if the casino wins.

Clearly it is not in either player’s interest to choose the same number every time.
In the lexicon of game theory this would be called a pure strategy. Instead the players
must use mixed strategies, which are probability distributions on the set of positive
integers.

More formally, a mixed strategy is a probability vector p = (p1, p2, . . . ), where
each pi is non-negative and

∑
i pi = 1. It may also be helpful to think of p as a linear

combination of pure strategies, p = ∑
i piδi , where δi is the pure strategy of choosing

i with probability 1. Thus, δi is the standard basis vector having 1 in the i th location
and 0 everywhere else.

Let f (p, q) denote the probability that you win when the you use the mixed strategy
p and the casino uses the mixed strategy q. Then

f (p, q) =
∑
i, j

ai j pi q j .

(This is a doubly infinite sum, as each of i and j can be any positive integer.) You seek
to maximize your chance of winning, while the casino seeks to minimize it. That is,
you would like to find p so that f (p, q) is as high as possible while the casino chooses
q to make it as low as possible.

(We are using f (p, q) to represent a probability, rather than an expected profit,
because we want to be flexible about the payoffs. Your average profit per round at the
high stakes table is

(+140) f (p, q) + (−100)(1 − f (p, q)).

The adjustment required for other stakes is apparent.)
This leads to the standard definitions of the value of the game to each player. The

value of the game to you is

v1 = sup
p

inf
q

f (p, q),

and the value of the game to the casino is

v2 = inf
q

sup
p

f (p, q).

(To understand these expressions, first note that infq f (p, q) is the worst thing that can
happen to you if you choose strategy p. Therefore, v1 is the best winning probability
that you can guarantee for yourself, independent of the casino’s choice. Similarly, v2

is the best result—lowest winning probability for you—that the casino can guarantee
for itself.)
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Now for any real valued function f (u, v) whose domain is a Cartesian product
U × V ,

sup
u

inf
v

f (u, v) ≤ inf
v

sup
u

f (u, v).

We leave the proof as an exercise for the reader. It follows that v1 ≤ v2.
For a finite game (one in which the sets of pure strategies for both players are finite)

we can apply the Minimax Theorem of von Neumann and Morgenstern. It states that

(a) the values are equal; that is, v1 = v2 = v; and
(b) there are optimal strategies p and q such that v = infq f (p, q) = supp f (p, q).

That means that if you choose p and the casino chooses q, the result v is guaranteed.
Unfortunately, the multiplication game is not a finite game. For infinite games the

Minimax Theorem is not true in general; there are examples of infinite games with
v1 �= v2. In the analysis that follows we will show that the multiplication game is like
a finite game, at least to the extent that v1 = v2.

The analysis

The analysis proceeds in steps.
First we observe that there is some redundancy in the set of pure strategies. For

example, the integers 21, 210, 2100, . . . all give the same results when chosen by ei-
ther player. Thus, in the payoff matrix the rows representing these pure strategies are
identical, and so we can eliminate all but one of these rows. We can do the same with
the columns indexed by these equivalent choices.

Next we observe that the choices don’t really need to be integers. A player could
choose 2.1 with the same result as choosing 21. We can define a reduced set of pure
strategies X as the set of rationals in [1, 10) having a terminating decimal expansion:

X =
{

m∑
k=0

dk10−k | m ≥ 0, dk ∈ {0, 1, . . . , 9}, d0 �= 0

}
.

Although the players are no longer choosing integers, we have not changed the game in
any essential way, and we now have an efficient description of the infinite sets of pure
strategies in which there is no redundancy. The players choose terminating decimals in
the interval [1, 10) and the casino wins if the product begins with the digits 1, 2, or 3.

Next we modify the game again, this time possibly in an essential way. We enlarge
the sets of pure strategies to include all the real numbers in [1, 10). Although this
increases the cardinality of the set of pure strategies from countable to uncountable,
the new game is easier to analyze and its solution will be essential in understanding
the original game. In a later section we will return to this modification to see whether
it affects our results.

So now the casino chooses x and you choose y in [1, 10) with the casino winning
if the first digit of xy is 1, 2, or 3. That is, the casino wins if

1 ≤ xy < 4 or 10 ≤ xy < 40.

The points (x, y) satisfying these inequalities make up the shaded region in FIGURE

1. The white region includes the points for which you win.
Finally, we straighten out the shaded region by using the logarithms of the num-

bers rather than the numbers themselves. We let the casino choose a = log10 x and
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Figure 1 Winning region for the casino

you choose b = log10 y. Clearly, choosing a and b is equivalent to choosing x and y.
(However, as we will see, mixed strategies can look very different when described in
terms of a and b.) Now the casino wins when

0 ≤ a + b < log10 4 or 1 ≤ a + b < 1 + log10 4,

which is equivalent to

(a + b) mod 1 ∈ [0, log10 4).

FIGURE 2 is a complete picture of the game—essentially the payoff matrix. You
choose a horizontal line and independently the casino chooses a vertical line. You
win if the point of intersection is in the white region.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2 Winning region for the casino

What are mixed strategies now that the players have an uncountable number of
choices? They should be probability distributions on the set [0, 1) of pure strategies.

There are many ways to describe probability distributions on an interval. Density
functions and cumulative distribution functions (cdf’s) come to mind. Most formally, a
probability distribution is any measure on the interval, which is a non-negative function
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defined on a suitable collection of subsets of [0, 1). The measure must be countably
additive and assign the value 1 to the whole interval. The mixed strategies we need can
be described in terms of density functions, while pure strategies are discrete distribu-
tions concentrated at single points.

Solving the (modified) game

In order to motivate the solution of this game, consider for a moment an analogous
finite game. Looking at FIGURE 2 one can see that the same proportion of each hor-
izontal line lies within the shaded region, and the same is true for the vertical lines.
A finite game with a similar structure is one in which both players have the same set
of pure strategies {1, . . . , n}; all entries in the payoff matrix are 1 or 0, and there are
the same number of 1’s in each row and in each column. The payoff matrix, then, is
something like a discrete version of FIGURE 2 with the location of the 1’s playing the
role of the white region.

For a game with these properties we claim that an optimal strategy for both players
is the uniform probability distribution

(1/n, . . . , 1/n).

To see this, let p be uniform. No matter which j the column player chooses, the row
player wins with probability

∑
i

ai j pi =
∑

i

ai j (1/n) = 1

n

∑
i

ai j = c

n
,

where c is the number of 1’s in each row. Thus, v1 ≥ c/n. On the other hand, if the
column player uses the uniform strategy for q and the row player chooses any row i ,
then the row player wins with the same probability

∑
j

ai j q j =
∑

j

ai j (1/n) = 1

n

∑
j

ai j = c

n
,

and thus v2 ≤ c/n. Since v1 ≤ v2, this proves that v1 = v2 and from that it follows that
the uniform probability distributions are optimal.

With this analogy to guide us, consider what happens when you choose your number
uniformly in [0, 1). This means your mixed strategy is the uniform distribution on this
interval, which we denote by λ. Assume that the casino uses the pure strategy δa . Thus,
the outcome is on the vertical line {(a, b)|b ∈ [0, 1)} and the probability that the point
(a, b) is in the shaded region is log10 4. That is the casino’s probability of winning.
Your probability of winning is 1 − log10 4. This probability is independent of a, and so
supa f (δa, λ) = 1 − log10 4. Since you can guarantee that the casino does not win with
a probability greater than log10 4, we know that the value of the game to you satisfies
v1 ≥ 1 − log10 4.

Now we look at the game from the casino’s point of view and reason in the same
way. No matter what pure strategy δb that you employ, the casino can choose its number
uniformly and win with probability log10 4. Thus, the casino can guarantee winning
with at least this probability no matter what you do, and so v2 ≤ 1 − log10 4. Since
v1 ≤ v2, we see that they are in fact equal, and it follows that the uniform distribution is
optimal for both players. These are the conclusions that the MiniMax Theorem would
have given us if it had been applicable. Since log10 4 ≈ 0.60206, the casino will win
just over 60% of the time, which makes the correct odds a bit higher than 3:2. To
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make the game fair the casino should pay you a bit more than $1.50 for your winning
one-dollar bet. The exact amount is

log10 4

1 − log10 4
≈ 1.5129,

but the casino was only paying $1.40 in the high stakes game, and so you found your-
self losing after playing for a while.

Now we transfer the uniform distribution λ on the logarithms in [0, 1) back to a
distribution on [1, 10) that we denote by β. Thus β assigns to the interval between
x1 and x2 the probability log10 x2 − log10 x1. This probability distribution β has the
density function

f (x) = 1

ln 10

1

x

shown in FIGURE 3. The area between x1 and x2 and lying under the graph of f gives
the probability that x is between x1 and x2.

0 2 3 4 5 6 7 8 9 10
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0.3

0.4

Figure 3 Plot of the Benford density f (x) = 1
(ln 10)x

In recent years this logarithmic probability distribution has become known as the
Benford distribution, named for the physicist Frank Benford who investigated the rel-
ative frequency of leading digits of more than 20,000 numbers in several datasets from
diverse sources such as populations of cities and the areas of river basins. Although
Benford described the phenomenon over 70 years ago [1], the first discovery was ac-
tually due to the astronomer and mathematician Simon Newcomb who observed the
phenomenon more than half a century earlier [8]. Newcomb’s paper did not spark any
further work in the years that followed. Benford, however, was fortunate to have his
paper appear just in front of an influential paper in modern physics having Hans Bethe
as one of the authors, and so it was widely seen by other scientists. This helped to at-
tach Benford’s name to the empirical observations and began what has become a small
industry; there are now more than 700 papers in a comprehensive Benford online bib-
liography [2]. (Naming the phenomenon after Frank Benford illustrates Stigler’s Law
of Eponymy, which states that no scientific discovery is named for its discoverer. Ap-
propriately, Stigler attributes his eponymous law to Robert Merton.) Benford’s Law
describes not just the distribution of the first significant digit but also the distribution
of all significant digits. In its general form the law is the logarithmic distribution on
the set of real numbers between 1 and 10, and even more generally the number base
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can be any positive integer b ≥ 2, in which case the Benford distribution is supported
on interval [1, b). The special cases concerning any particular significant digits can be
derived from the continuous distribution. For enlightening accounts of Benford’s Law
we recommend the articles by Raimi [9], Hill [5, 6], and Fewster [3] or the statistics
text by Larsen and Marx [7].

What happens if we change the game so that the casino wins if the first digit is
prime? Or change the game so that the winner is determined by the value of the second
digit of the product? To what extent can we solve the game, i.e., determine the optimal
strategies and the value of the game, when the winning conditions are changed?

Let W ⊂ [1, 10) be the winning set for the casino; the casino wins when the product
xy lands in W . For the version we have analyzed the winning set W is the interval
[1, 4), consisting of the numbers whose first digit is 1, 2, or 3. Now look at the logs
of the numbers in W and call that set Z . If the logs are a and b, then the casino
wins when a + b (mod 1) is in Z . Now plot the region in the unit square consisting
of the points (a, b) for which the casino wins. See FIGURE 4 for the case in which
the casino wins when the first digit is prime. In general this region consists of bands
between lines having slope −1. Each horizontal line and each vertical line meets the
shaded region in the same proportion. The points on the horizontal axis that are in the
shaded region are (a, 0) where a ∈ Z . Thus, the proportion of each line that lies in
the shaded region is λ(Z), the Lebesgue measure of Z , which is the same as β(W ),
the Benford measure of W . Using the same reasoning as before we conclude that
if the casino chooses its logarithm uniformly, then it will win with probability λ(Z)

regardless of what you do, and if you choose your logarithm uniformly you will win
with probability equal to 1 − λ(Z).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4 Winning region for the casino for prime first digit

Just how far can we push this approach? Certainly W (or Z) can be any finite union
of intervals but we can even allow countable unions of intervals; it does not matter
whether they are open, half-open, or closed. But non-measurable sets are too strange
to be used for winning sets, because if Z is not Lebesgue measurable, then we can-
not make sense of the statement that every horizontal and vertical line meets the set
{(a, b) | a + b (mod 1) ∈ Z} in the same proportion. We summarize this discussion
in the following theorem.

THEOREM 1. Let the casino’s winning set W ⊂ [1, 10) be a finite or countable
union of intervals. Then an optimal mixed strategy for both you and the casino is
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to choose your numbers from the Benford distribution on [1, 10), or, equivalently, to
choose their logarithms uniformly in [0, 1). The probability that the casino wins is
β(W ).

Solving the original game

Now we return to the analysis of the original game in its reduced form in which you
and the casino choose numbers in the set X of terminating decimals in [1, 10). We will
show that by approximating the Benford distribution we can find mixed strategies that
come arbitrarily close to being optimal. That is, we will show that

sup
p

inf
q

f (p, q) = inf
q

sup
p

f (p, q) = log10 4,

but we will not actually find strategies that attain this value.
Let Xn be the subset of X whose elements have a terminating expansion with n

digits,

Xn =
{

n−1∑
k=0

dk10−k | dk ∈ {0, 1, . . . , 9}, d0 �= 0

}
.

Consider the following strategy. Fix a positive integer n. Generate a random number
a ∈ [0, 1), compute 10a and then choose x ∈ X to be the nearest n-digit number less
than or equal to 10a . This defines a probability distribution βn that is concentrated on
the finite set Xn . The probability mass at the point x ∈ Xn is given by

βn{x} = log10(x + 1/10n−1) − log10 x .

Let F(x) = log10 x be the cumulative distribution function (cdf) of β and Fn the cdf
of βn . Then Fn has jumps at the points in Xn and is always greater than or equal to F .
(See FIGURE 5.) The maximum difference between Fn and F occurs at x = 1, where

Fn(1) − F(1) = log10(1 + 1/10n−1) − 0 <
1

10n−1
. (1)
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Figure 5 The cdf’s of β1 and β
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Now if the casino uses βn for its mixed strategy and you play y ∈ X (or, for that
matter, any y ∈ [1, 10)), then the casino will win with probability βn(Vy) where

Vy = {x ∈ X | xy ∈ [1, 4) ∪ [10, 40)}
If ε > 0, then for n sufficiently large we have |βn(Vy) − β(Vy)| < ε, and this esti-
mate holds for all y because Vy is either an interval or a union of two intervals in
[1, 10) and the measures of Vy can be expressed with the cdf’s Fn and F evaluated
at the endpoints of the intervals where they differ by at most 10n−1 according to (1).
Therefore, the casino can guarantee a win with probability at least log10 4 − ε, and so
v1 ≥ log10 4 − ε.

Similar reasoning shows you can use βn for n sufficiently large and guarantee that
the casino wins with probability no more than log10 4 + ε. Therefore, v2 ≤ log10 4 − ε.
These inequalities hold for all ε, and thus v1 = v2 = log10 4. It is worth repeating that
we have not found an optimal strategy that actually achieves the value but rather a
family of strategies that come arbitrarily close to optimal. It is tempting to consider
the limit of the βn , which is β, as an optimal strataegy, but β is not a probability
distribution on X . If an optimal strategy μ exists as a probability distribution on X ,
then it must have the property that μ(Vy) = log10 4 for all y ∈ X . There is no evident
way to produce such a measure even if one exists.

The group game

How far we can generalize the multiplication game? Although there may be other paths
to follow, we will assume that there is a binary operation that combines the players’
choices to produce the result. Does the operation need to be associative? Commuta-
tive? Have an identity? Inverses? And what about the nature of the set on which the
operation is defined?

In the original game we use the positive integers with multiplication. The operation
is associative, commutative, and has an identity, but does not have inverses. The same
is true of the reduced version with the set X , where after multiplying we move the
decimal point if necessary to get a number between 1 and 10. However, by extending
the set of pure strategies to be all real numbers between 1 and 10, we get inverses, and
the result is that we have a group. This group is nicely described as the quotient group
R+/〈10〉, where R+ is the multiplicative group of positive real numbers and 〈10〉 is
the subgroup generated by 10 consisting of all integral powers of 10. The numbers in
[1, 10) are unique coset representatives of the subgroup 〈10〉. With logarithms we use
the set [0, 1) with addition mod 1, which is another way to describe the quotient group
R/Z, where R is the additive group of real numbers and Z is the integer subgroup.
An isomorphism from R/Z to R+/〈10〉 is given by a �→ 10a . For the R/Z game we
proved that Lebesgue measure is optimal, and for the R+/〈10〉 game it is the Benford
measure that is optimal. These measures are special for their respective groups in that
they are invariant. For Lebesgue measure it means that λ(E) = λ(a + E) for a subset
E of [0, 1) and for a ∈ [0, 1). For the Benford measure it means that β(E) = β(x E)

for E ⊂ [1, 10) and x ∈ [1, 10). (Addition and multiplication must be done in the
quotient groups.) Furthermore, λ and β are probability measures, meaning that they
are positive measures with total mass equal to one.

There is a class of groups having exactly the properties necessary to generalize The-
orem 1, namely the class of compact topological groups. Among these groups are the
groups we have just described, R/Z and R+/〈10〉, both of which are abelian and topo-
logically equivalent to circles. Also, every finite group (abelian or not) is a compact
topological group with its discrete topology. For infinite non-abelian examples there
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are the groups of isometries of Rn for n ≥ 2. By contrast, topological groups that are
not compact include the real numbers under addition, the non-zero real numbers under
multiplication, the invertible n × n matrices over R or over C, and any infinite group
with the discrete topology (such as the integers under addition).

In general, a topological group is a topological space G together with a continuous
group operation G × G → G : (g1, g2) �→ g1g2 and a continuous inverse map G →
G : g �→ g−1. With compactness comes the existence of a unique invariant (under left
and right multiplication) probability measure λ known as Haar measure [4]. For finite
groups Haar measure is simply normalized counting measure, whereas for R/Z it is
Lebesgue measure and for R+/〈10〉 it is the Benford measure.

With a compact topological group G we can generalize Theorem 1 as follows. Let
W ⊂ G be a λ-measurable subset. The casino chooses x ∈ G, you choose y ∈ G, and
the casino wins if xy is in W . Then for both players an optimal mixed strategy is to use
Haar measure λ, and the value of the game, i.e., the probability that the casino wins, is
λ(W ). The proof, the details of which will be omitted, uses the invariance properties
of λ to show that when the casino uses λ it does not matter what strategy you use, and
when you use λ it does not matter what the casino does.

If any of the hypotheses are relaxed, then we do not have complete solutions to
the game. The analysis becomes more difficult, something we have already seen with
the original game played on the positive integers or in the equivalent version on the
terminating decimals. Two important properties are lacking: inverses and compactness.
We can exhibit mixed strategies arbitrarily close to optimal, and thus show that the
game has a value, but we cannot exhibit strategies that actually achieve the optimum.
Even if we add inverses to the set of terminating decimals by including all rational
numbers in [1, 10), the resulting group is not compact. It is countable and infinite and
so it cannot carry an invariant probability measure because each element of the group
would have the same non-zero mass and so the total mass would be infinite. We doubt
that an optimal strategy exists but it is a question we leave unanswered.

Acknowledgment The author would like to thank B. Ravikumar, inventor of the multiplication game, for
providing a copy of his paper describing and analyzing the game. The limiting distribution that he found is, of
course, the Benford distribution.
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Summary The Multiplication Game is a two-person game in which each player chooses a positive integer
without knowledge of the other player’s number. The two numbers are then multiplied together and the first digit
of the product determines the winner. Rather than analyzing this game directly, we consider a closely related
game in which the players choose positive real numbers between 1 and 10, multiply them together, and move
the decimal point, if necessary, so that the result is between 1 and 10. The mixed strategies are probability
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distributions on this interval, and it is shown that for both players it is optimal to choose their numbers from the
Benford distribution. Furthermore, this strategy is optimal for any winning set, and the probability of winning is
the Benford measure of the player’s winning set. Using these results we prove that the original game in which
the players choose integers has a well-defined value and that strategies exist that are arbitrarily close to optimal.
Finally, we consider generalizations of the game in which players choose elements from a compact topological
group and show that choosing them according to Haar measure is an optimal strategy.
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Proof Without Words: A Tangent Inequality

If αk ≥ 0 for k = 1, . . . , n and
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By now you probably have at least a passing acquaintance with Sudoku, the pencil-
and-paper puzzle that has, for the past few years, been displacing advice columns and
word jumbles from the back pages of newspapers all over the world.

The rules are simple. One is given a 9 × 9 grid. Each cell in the grid is to be filled
in with one of the digits from 1 to 9. Some of the cells have been filled in already, as
in the example below.

3 5 7 1
6 1

9 3 6
4 6 5 9

7 6
5 2 7 1
7 2 3

3 5
6 8 4 2

The puzzler may not fill in the empty cells willy-nilly; he or she must obey the Rule
of One, which requires that each row, each column, and each block (the 3 × 3 subgrids
with thick borders) must contain every digit from 1 to 9 exactly once. To simplify our
discussion we say that a 9 × 9 grid completely filled with the digits 1 to 9 such that
the Rule of One holds is a Sudoku. (So the grid above, then, is not a Sudoku according
to our definition, because not all of the cells have been filled in. Once all the cells have
been filled in, then it’s a Sudoku.)

The rules of Sudoku suggest many natural mathematical questions: How do you
construct these puzzles? How do you solve these puzzles? How many different Su-
dokus are there? How many of these are essentially different? We call two Sudokus
essentially the same, or equivalent, if you can get from one to the other in finitely many
steps where a single step might be switching the first two columns, or rotating the grid
ninety degrees, or relabeling entries (replacing every 2 with a 7 and every 7 with a
2, for example). We will make this notion of equivalence more precise in the sections
that follow.

The answers to the questions above are known. Felgenhauer and Jarvis [5] found
that there are 6,670,903,752,021,072,936,960 Sudokus. That’s a big number. Also,
Jarvis and Russell [10] found that there are 5,472,730,538 essentially different Su-
dokus. That’s a smaller number. But it’s still pretty darn big.

There is no need to limit oneself to 9 × 9 grids; any grid of size n2 × n2 will do.
Herzberg and Murty [8] use graph-theoretic techniques to provide an asymptotic esti-
mate for the number of n2 × n2 Sudokus.

Math. Mag. 83 (2010) 111–122. doi:10.4169/002557010X482871. c© Mathematical Association of America
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To make our discussion accessible to those without a background in graph theory,
and to keep things on an order of magnitude that a human can more readily compre-
hend, we answer these questions about the much simpler, but still interesting, case of
4 × 4 Sudokus. We call these mini-Sudokus. Thus a mini-Sudoku is a 4 × 4 grid, for
example,

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

,

such that the Rule of One holds: Each row, each column, and each block (the 2 × 2
subgrids with thick borders) contains every digit from 1 to 4 exactly once.

Our main tools come from group theory. In particular, the notion of groups acting
on sets will enable us to define precisely what it means for two mini-Sudokus to be
essentially the same. Undergraduate math majors will have seen these concepts in
a first abstract algebra class and may find that applying newly-learned group theory
methods to a familiar, concrete example brings the abstract theory to life.

Various sources discuss the mathematics of Sudoku in general [3, 4, 7, 8].

Counting mini-Sudokus

How many mini-Sudokus are there? They can be enumerated in many ways. One
method is to consider first the four entries in the upper left 2 × 2 block. These entries
must be 1, 2, 3, and 4, but they can be put in any order. This gives 4! = 24 ways of
filling this block. The reader should confirm that, once this block has been filled, for
example,

1 2
3 4

*
*

,

then all the other entries are determined by the Rule of One and the choice of the two
entries marked *. These two entries are arbitrary except that they must be different, so
there are 4 · 3 = 12 ways of choosing them.

Here are the 12 possible mini-Sudokus obtained by filling in the empty cells in the
above example:

A1 =
1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

A2 =
1 2 4 3
3 4 2 1
2 1 3 4
4 3 1 2

A3 =
1 2 4 3
3 4 2 1
4 3 1 2
2 1 3 4

A4 =
1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

B1 =
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

B2 =
1 2 4 3
3 4 1 2
2 1 3 4
4 3 2 1

B3 =
1 2 4 3
3 4 1 2
4 3 2 1
2 1 3 4

B4 =
1 2 3 4
3 4 2 1
4 3 1 2
2 1 4 3
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C1 =
1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

C2 =
1 2 4 3
3 4 2 1
2 3 1 4
4 1 3 2

C3 =
1 2 4 3
3 4 2 1
4 1 3 2
2 3 1 4

C4 =
1 2 3 4
3 4 1 2
4 1 2 3
2 3 4 1

We have labeled these A1, A2, . . . , C3, C4 for future reference. Can the reader guess
why we have labeled them in this manner?

Now we can calculate the number of mini-Sudokus. There are 24 ways of filling in
the upper left 2 × 2 block, and, once that is done, there are 12 ways of filling in the rest
of the grid. This gives a total of 24 · 12 = 288 different mini-Sudokus. (So, while the
number of different 9 × 9 Sudokus—6,670,903,752,021,072,936,960—is excessively
disgusting, the number of different mini-Sudokus is merely two gross!)

Row and column symmetries

Are the 12 mini-Sudokus listed above really that different from one another? After all,
interchanging the last two columns of A1 gives A2. Similarly, interchanging the bot-
tom two rows of A2 gives A3. Indeed, the mini-Sudokus A1, A2, A3, and A4 differ only
by switching columns and/or rows. We would like to say that these mini-Sudokus are
essentially the same or, using a more standard nomenclature, that they are equivalent.
Similarly, we would like to say that the mini-Sudokus B1, B2, B3, and B4 are all equiva-
lent (as are C1, C2, C3, and C4).

But are A1 and B1 equivalent? How about A1 and C1? Are all mini-Sudokus equivalent
in some sense?

To answer these questions, we need to be precise about what equivalent means.
And to do that, we have to understand the set of mini-Sudoku symmetries, by which
we mean one-to-one onto functions from the set of all mini-Sudokus to itself. We have
already mentioned that interchanging the bottom two rows in any given mini-Sudoku
always yields another mini-Sudoku. So the operation of interchanging these two rows
is a mini-Sudoku symmetry. If we give this symmetry the symbol ρ then ρ(A1) = A4,
ρ(A4) = A1, ρ(A2) = A3, and so on. Interchanging the last two columns is also mini-

Sudoku symmetry—call it σ .
Composing any two symmetries yields another symmetry. For example, interchang-

ing the bottom two rows, followed by interchanging the last two columns, is also a
mini-Sudoku symmetry, which we would write as σρ. The symmetry that leaves all
mini-Sudokus unchanged is called the identity symmetry and denoted id. Every symme-
try γ has an inverse symmetry γ −1 which undoes whatever the symmetry does, that is,
γ γ −1 = γ −1γ = id. For example, ρ−1 = ρ since switching the bottom two rows of a
mini-Sudoku twice gives the original mini-Sudoku back. For any three mini-Sudoku sym-
metries α, β, γ , we have (αβ)γ = α(βγ ), since function composition is associative.
In short, the set of mini-Sudoku symmetries is a group.

Now we can explain equivalence. If K is a group of mini-Sudoku symmetries (that
is, a subgroup of the set of all mini-Sudoku symmetries), then two mini-Sudokus X and
Y are K -equivalent if one can be obtained from the other by applying some symme-
try in K , that is, Y = γ (X) for some γ ∈ K . Since K is a group, this is, in fact, an
equivalence relation. The set of all mini-Sudokus that are K -equivalent to X is called
the K -equivalence class containing X. Every mini-Sudoku is contained in a unique K -
equivalence class. We say that the group K acts on the set of mini-Sudokus. Texts by
Gallian [6] and Rotman [9] are good places to learn more about groups acting on sets.

As we have already seen, given a mini-Sudoku, there are some easy ways to make a
new mini-Sudoku from it. For example, we could switch the first row with the second
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row, and leave the bottom two rows alone. Another example would be to send Row 1
to Row 3, Row 3 to Row 2, Row 2 to Row 4, and Row 4 to Row 1.

Since there are four rows in a mini-Sudoku, we can regard the set of such row sym-
metries as a subgroup R of the symmetric group S4. However, not all row permutations
are symmetries of mini-Sudokus. For example, the permutation taking Row 1 to Row 2,
Row 2 to Row 3, and Row 3 to Row 1, leaving Row 4 unchanged, takes the mini-Sudoku
A1 to

2 1 4 3
1 2 3 4
3 4 1 2
4 3 2 1

which is not a mini-Sudoku. Thus R is isomorphic to a proper subgroup of S4. Which
subgroup?

The answer is that R is isomorphic to the dihedral group D4, the group of symme-
tries of a square. One way to see this is to draw a square and to label its vertices with
the rows of the mini-Sudoku, as below. (Do not confuse this square with the mini-Sudoku
grid itself—that comes later!)

Row 1

Row 2

Row 3

Row 4

The group D4 consists of 8 symmetries: four rotations, by 0◦, 90◦, 180◦, and 270◦,
and four reflections through the axes indicated by the dotted lines in the diagram.

Thus, switching the top two rows of a mini-Sudoku corresponds to reflecting the
square about the diagonal axis through the vertices labeled Row 3 and Row 4. Rotation
of the square by 90◦ clockwise corresponds to the mini-Sudoku symmetry that sends
Row 1 to Row 3, Row 3 to Row 2, Row 2 to Row 4, and Row 4 to Row 1. The
reader should check that each symmetry of the square corresponds to a mini-Sudoku
row symmetry and vice versa. The isomorphism between R and D4 is then transparent.

By replacing the word row with the word column in the above discussion, we get a
new group C of mini-Sudoku column symmetries, again isomorphic to D4. If μ ∈ R and
ν ∈ C , then applying μ and then ν to a mini-Sudoku gives the same result as applying
first ν then μ. In other words, row symmetries commute with column symmetries. This
means that, combining the 8 row symmetries with the 8 column symmetries, we get
64 different symmetries forming a group R × C isomorphic to D4 × D4.

The reader should check that A1 and A2 are C-equivalent but not R-equivalent, and
that A1 and A3 are R-equivalent but not C-equivalent. The mini-Sudokus A1, A2, A3 and
A4 are all in the same R × C-equivalence class. Similar statements hold for B1, B2, B3

and B4, as well as for C1, C2, C3 and C4.

Is A1 R × C-equivalent to B1 or C1? That is, is there some combination of row and
column symmetries that yields B1 or C1 when applied to A1?

To show that the answer to these questions is no, we associate with each column and
row of a mini-Sudoku a partition of the set {1, 2, 3, 4}—specifically, one of the three
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partitions

α = {{1, 2}, {3, 4}} β = {{1, 3}, {2, 4}} γ = {{1, 4}, {2, 3}}
The notation { } means that order does not matter. For example, {{1, 2}, {3, 4}},
{{2, 1}, {3, 4}}, {{3, 4}, {1, 2}}, and {{4, 3}, {2, 1}} are all different ways of writing α.

The partition associated with a row or a column is fairly obvious—just take the
entries and put them in order into {{∗, ∗}, {∗, ∗}} in place of the asterisks. For example,
all the row partitions of A1 are α, and all the column partitions are β. All the row
partitions of B1 are α, but the column partitions are β, β, γ and γ from left to right.
The row partitions of C1 are α, α, γ , γ from top to bottom, but all the column partitions
are β.

For an arbitrary mini-Sudoku X, it is not hard to see that the Rule of One applied to
the top two blocks implies that the partitions associated with Row 1 and Row 2 are the
same. Of course, the same holds for Row 3 and Row 4, Column 1 and Column 2, and
Column 3 and Column 4. So X is associated with two row partitions and two column
partitions. We will record all this information as an ordered pair [X] of (unordered)
pairs of partitions that we call the partition type of X. The first entry contains the two
row partitions, and the second entry contains the two column partitions. For example,

[A1] = ({α, α}, {β, β}) [B1] = ({α, α}, {β, γ }) [C1] = ({α, γ }, {β, β})
Note that ({α, α}, {β, γ }) and ({α, α}, {γ, β}) are equal, but ({α, α}, {β, γ }) is not
equal to ({β, γ }, {α, α})). In particular, [A1] = [A2] = [A3] = [A4], [B1] = [B2] =
[B3] = [B4] and [C1] = [C2] = [C3] = [C4].

What makes these partitions useful is how they change under the mini-Sudoku sym-
metries we have discussed. For example, applying the eight row symmetries in R to
the first column of A1 yields eight different columns:

1
3
2
4

1
3
4
2

3
1
2
4

3
1
4
2

2
4
1
3

4
2
1
3

2
4
3
1

4
2
3
1

However, each of these columns is associated with the same partition, namely β.
Thus column partitions are invariant under the row symmetries, and, similarly, row

partitions are invariant under the column symmetries. Of course, the column partitions
are simply permuted by column symmetries, and row partitions are permuted by row
symmetries. Thus we have the following rule:

RULE 1. If mini-Sudokus X and Y are R × C-equivalent, then their partition types
are the same—that is, [X] = [Y].

Since the partition types of A1, B1, and C1 are distinct, no pair of these mini-Sudokus
is R × C-equivalent.

The situation we have been considering is typical in mathematics. One has a col-
lection of objects (in our case, mini-Sudokus) and a notion of equivalence, often from a
group action (in our case, the group is R × C). The goal is to determine which objects
are equivalent. In algebra, the objects might be groups, rings, or fields, and equivalent
means isomorphic. In topology, the objects might be topological spaces or manifolds,
and equivalent means homeomorphic. In linear algebra, the objects might be square
matrices, two of which are equivalent if they are similar.

The general strategy for such problems is to attach an invariant to each object—
something that is the same for equivalent objects. The partition type is an invariant for
mini-Sudokus; that is what Rule 1 says.
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Other examples of invariants are the order of a group, the elementary divisors of a
finite abelian group, the characteristic of a field, the fundamental group of a topological
space, the genus of a compact surface, the determinant of a square matrix, and the
Jordan canonical form of a square matrix with complex entries. The ideal invariant is
easy to compute and completely determines whether or not two objects are equivalent
(in which case, we say the invariant is complete). The set of elementary divisors is a
complete invariant for the set of finite abelian groups. The order of a group is not a
complete invariant, however, as nonisomorphic groups can have the same order. The
determinant is not a complete invariant for square matrices, but the Jordan canonical
form is.

When we defined the notion of partition type, we did so carefully, to ensure that it
would be an invariant. In particular, it was necessary to define [X] as an ordered pair
of unordered pairs. For example, let

D =
3 4 1 2
2 1 3 4
4 3 2 1
1 2 4 3

.

Notice that D and B1 are R × C-equivalent; you can obtain one from the other by swap-
ping the two left columns with the two right columns. Rule 1 assures us that they have
the same partition type, and indeed we can verify directly that [D] = ({α, α}, {γ, β}) =
[B1]. Had we defined [X] as an ordered pair of ordered pairs, however, we would not
have had the desired equality [D] = [B1].

Is partition type a complete invariant for mini-Sudokus with respect to R × C-
equivalence? In other words, can we find two mini-Sudokus that have the same partition
type, but which are not R × C-equivalent? We will see the answer to this question
later.

Geometric symmetries

Have we now found all mini-Sudoku symmetries? Definitely not! After all, a mini-

Sudoku is itself a square, and it is not hard to see that any symmetry of a square is
also a symmetry of mini-Sudokus.

For example, reflecting a mini-Sudoku across its horizontal axis produces a new mini-

Sudoku. But this symmetry is just the row symmetry that reverses the order of the
rows—it interchanges Row 1 and Row 4, and Row 2 and Row 3. Similarly, reflecting
across the vertical axis is a column symmetry.

What about reflections across a diagonal? For concreteness, let τ be the symmetry
that reflects a mini-Sudokus across its main diagonal (from top left to bottom right).
This symmetry plays an important role in our discussion. As the reader can compute,
the partition type of τ(A1) is [τ(A1)] = ({β, β}, {α, α}), which is enough to show that
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this mini-Sudoku is not R × C-equivalent to A1. In other words, the symmetry τ cannot
belong to R × C . Note that τ 2 = id, so that τ−1 = τ , and Z = {id, τ } is a group of
mini-Sudoku symmetries isomorphic to Z2.

Rotating 90◦ clockwise is the result of first reflecting across the main diagonal and
then reflecting across the vertical axis. Applying these two symmetries in the other
order results in a rotation of 270◦. Thus the rotations by 90◦ and 270◦ are compositions
of τ and symmetries in R × C . Rotation by 180◦ is the composition of the reflections
across the horizontal and vertical axes (in either order). So this rotation is in R × C .
Specifically, it is the result of reversing the orders of the rows and the columns.

For example, rotating B1 by 90◦, 180◦ and 270◦ clockwise we get the mini-Sudokus

S =
4 2 3 1
3 1 4 2
1 4 2 3
2 3 1 4

T =
2 1 3 4
3 4 1 2
1 2 4 3
4 3 2 1

U =
4 1 3 2
3 2 4 1
2 4 1 3
1 3 2 4

with partition types [S] = [U] = ({β, γ }, {α, α}) and [T] = ({α, α}, {β, γ }). Since
[B1] = ({α, α}, {β, γ }), neither S nor U is R × C-equivalent to B1. This means that the
corresponding symmetries, rotation by 90◦ and 270◦, are not in R × C .

What about T? As suggested above, T can be obtained from B1 by reversing the
orders of both the rows and the columns:

B1 =
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

−→
4 3 1 2
2 1 4 3
3 4 2 1
1 2 3 4

−→
2 1 3 4
3 4 1 2
1 2 4 3
4 3 2 1

= T

There is just one symmetry in D4 that we have not yet discussed, namely reflection
across the other diagonal (from top right to bottom left). We leave the reader the task
of showing that this symmetry is not in R × C , but is, nonetheless, τ composed with a
symmetry in R × C .

Note that τ interchanges the rows and the columns of any mini-Sudoku. It sends
Row 1 to Column 1, Row 2 to Column 2, etc. This implies also that τ interchanges
row symmetries and column symmetries. For example, if ρ ∈ R is the row symmetry
that interchanges Row 1 and Row 2, then σ = τρτ is the column symmetry that in-
terchanges Column 1 and Column 2. This equation can be written as στ = τρ, which
shows that, even though τ does not commute with elements of R × C , it does so at the
cost of interchanging rows and columns. As a consequence, any symmetry that can be
obtained by composing τ and elements of R × C in any order can be written in the
form τμ with μ ∈ R × C . (The same symmetry can also be written in the form ντ

with ν ∈ R × C where ν and μ are the same except for the interchange of rows and
columns.)

We now have 64 symmetries in R × C , and 64 more symmetries of the form τμ

with μ ∈ R × C . In the second category are the rotations by 90◦ and 270◦, as well as
the reflections across the diagonal axes. Together, these symmetries form a group H
of order 128. Since τ does not commute with all elements of R × C , we know that H
is not the direct product of R × C and Z = {id, τ }. Instead, H is a semi-direct product
[9] of these groups:

H = (R × C) � Z .

In other words, R × C is normal in H and has trivial intersection with Z .
Naturally, we will say that two mini-Sudokus X and Y are H-equivalent if one can be

obtained from the other by applying one of the symmetries in H .
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Is A1 H -equivalent to B1 or C1? That is, is there some symmetry in H that yields
B1 or C1 when applied to A1? Once again, using partition types, we can show that the
answer is no.

Since the group H acts on mini-Sudokus, it also acts on partition types of mini-

Sudokus. By Rule 1, symmetries in H that are also in R × C leave partition types
unchanged. Because τ interchanges the rows and columns of mini-Sudokus, this sym-
metry interchanges the associated row and column partitions of any partition type. For
example, since [C1] = ({α, γ }, {β, β}), we have [τ(C1)] = ({β, β}, {α, γ }).

In view of the nature of the symmetry τ , it is natural to call τ(X) the transpose of
X and [τ(X)] the transpose of [X]. So we use the notation [X]T = [τ(X)]. Thus [X]T is
obtained from [X] by switching its two entries. Now, if mini-Sudokus X and Y are H -
equivalent, then X is R × C-equivalent to Y or to τ(Y). We therefore say that [X] and [Y]
are H-equivalent if [X] = [Y] or [X] = [Y]T . Define [X]H to be the H -equivalence class
of [X]. Note that we now have two H -equivalences: H -equivalence of mini-Sudokus and
H -equivalence of partition types.

With Rule 1, we have the following:

RULE 2. If mini-Sudokus X and Y are H-equivalent, then [X]H = [Y]H .

Since we have [A1]T = ({β, β}, {α, α}), [B1]T = ({β, γ }, {α, α}) and [C1]T =
({β, β}, {α, γ }), no pair of the mini-Sudokus A1, B1 and C1 is H -equivalent.

Is [·]H a complete invariant with respect to H -equivalence? In other words, are
there mini-Sudokus X and Y that have H -equivalent partition types, but which are not
H -equivalent? We will see the answer to this question shortly.

Relabeling symmetries

There is yet one other way to create a new mini-Sudoku from a given mini-Sudoku—
simply relabel it, that is, apply a permutation of the set {1, 2, 3, 4} to its entries. For
example, starting with A1, we could interchange 1 and 2 to get

V =
2 1 3 4
3 4 2 1
1 2 4 3
4 3 1 2

.

Since [V] = ({α, α}, {γ, γ }), V is not H -equivalent to A1, and so this relabeling sym-
metry, switching 1 and 2, is not in H . We have found a new symmetry! Since there
are 4! = 24 different permutations of {1, 2, 3, 4} forming the group S4, there is a cor-
responding group L ∼= S4 of relabeling symmetries of mini-Sudokus.

What do the relabeling symmetries do to the partitions α, β, and γ ? The answer
is that these symmetries permute them. For example, interchanging 1 and 2 takes α

to α, β to γ , and γ to β. This is why this particular labelling symmetry takes [A1] =
({α, α}, {β, β}) to [V] = ({α, α}, {γ, γ }).

For another example, consider the relabeling symmetry λ ∈ L that maps 2 to 3, 3
to 4, and 4 to 2, leaving 1 fixed. In cycle notation, we would write λ = (2, 3, 4). This
symmetry takes α to β, β to γ , and γ back to α. It is not hard to see that each of the six
permutations of α, β, and γ comes from exactly 4 relabeling symmetries in L . Hence
we say that two partition types are L-equivalent if one can be obtained from the other
by a permutation of α, β and γ .

We claim that there is no element of H that has the same effect on all mini-Sudokus
as the relabeling symmetry λ = (2, 3, 4). To show that this is so, we pick a mini-Sudoku
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with partition type ({α, α}, {β, γ })—for example, B1 will do. Then λ acting on this mini-

Sudoku produces a mini-Sudoku with partition type ({β, β}, {γ, α}). By Rule 2, the new
mini-Sudoku is not H -equivalent to the original one, and so λ cannot be in H . (Another
way to see that λ /∈ H is to use Lagrange’s theorem [6, 9]. No element of order 3 can
be in H , since |H | = 128.) Are any of the symmetries in L also in H? It turns out that
only the identity symmetry is in both groups. We sketch a proof of this fact, leaving the
details to the reader. First observe that if λ ∈ L and σ ∈ H , then applying first λ and
then σ has the same effect as applying first σ and then λ. In other words, λσ = σλ.
So if σ ∈ L ∩ H , then σ is in the center of L . But L is isomorphic to S4, whose center
contains only the identity.

Counting symmetries How many symmetries have we identified? We know that re-
labeling symmetries commute with symmetries in H , so combining all of these sym-
metries gives a group isomorphic to the direct product of H and L . Therefore we
define

The mini-Sudoku Symmetry Group = G ∼= H × L .

This group has order |G| = |H | · |L| = 128 · 24 = 3072. Since G contains all mini-

Sudoku symmetries that we wish to consider, instead of saying that mini-Sudokus X
and Y are G-equivalent, we will just say that they are equivalent. Equivalence of this
type is what is meant by “essentially the same” in the introduction and in [8, 10].

Why should G be the group of symmetries that we, and others, have chosen to
consider? Here’s why. Let M be the set of all sixteen cells in a 4 × 4 grid. Then a mini-

Sudoku is nothing more and nothing less than a function f : M → {1, 2, 3, 4} that
obeys the Rule of One. An element λ ∈ L acts on a mini-Sudoku f by pre-composition,
sending f to λ ◦ f . Likewise, H is a subgroup of the group SM of all bijective functions
from M to itself, and an element σ ∈ H acts on a mini-Sudoku f by post-composition,
sending f to f ◦ σ . We have chosen H with care, so that f ◦ σ necessarily still
obeys the Rule of One; hence we shall say that every element of H is mini-Sudoku-
preserving. It is tedious but straightforward to verify the converse, that every mini-

Sudoku-preserving element of SM is in H . So we have not chosen G arbitrarily at
all—it is the set of all mini-Sudoku symmetries that can be obtained by permuting cells
and permuting labels.

(For 9 × 9 Sudokus, the group generated by the row and column symmetries to-
gether with the rotations and reflections has order 3,359,232, and there are 9! rela-
beling symmetries. Hence the Sudoku symmetry group has order 3,359,232 · 9! =
1,218,998,108,160. We remark that the row symmetry group for an n2 × n2 Sudoku
is an n-fold wreath product [10].)

Note that, like the groups H and L , the group G acts on mini-Sudokus and also
on partition types. Define [X]G to be the G-equivalence class of [X]. In other words,
[X]G = [Y]G if and only if [X] is L-equivalent to [Y] or to [Y]T .

RULE 3. If mini-Sudokus X and Y are equivalent, then [X]G = [Y]G.

Now we can see whether A1, B1, and C1 are equivalent. If a mini-Sudoku X is equiv-
alent to A1, then, by Rule 3, [X] is ({α, α}, {β, β}), ({β, β}, {α, α}), ({α, α}, {γ, γ }),
({γ, γ }, {α, α}), ({β, β}, {γ, γ }) or ({γ, γ }, {β, β}). So, in particular, X cannot be B1

or C1, and so A1 is not equivalent to either of these mini-Sudokus.
What about the equivalence of B1 and C1? If X is equivalent to B1, then, by Rule 3, [X]

is ({α, α}, {β, γ }), ({β, γ }, {α, α}), ({β, β}, {α, γ }), ({α, γ }, {β, β}), ({γ, γ }, {α, β}),
or ({α, β}, {γ, γ }). Because [C1] = ({α, γ }, {β, β}), it is possible that B1 and C1 are
equivalent. Since we have not (yet) shown that the converse of Rule 3 holds, we do not
yet know whether B1 is equivalent to C1 or not.
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If these mini-Sudokus are equivalent, then the partition types of B1 and C1 suggest
how to construct a symmetry that takes one to the other. There will have to be a relabel-
ing symmetry that interchanges α and β, composed with the transposition τ , composed
(perhaps) with some row and column symmetry:

[B1] = ({α, α}, {β, γ }) −→ ({β, β}, {α, γ }) −→ ({α, γ }, {β, β}) = [C1].
In fact, by choosing the relabeling symmetry, λ ∈ L , which interchanges 2 and 3, no
row or column symmetry is needed:

B1 =
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

λ−→
1 3 2 4
2 4 3 1
3 1 4 2
4 2 1 3

τ−→
1 2 3 4
3 4 1 2
2 3 4 1
4 1 2 3

= C1.

This shows that B1 and C1 are equivalent, and hence that B1, B2, B3, B4, C1, C2, C3,
and C4 are all in the same equivalence class. Since A1 and B1 are not equivalent, there
must be a second equivalence class containing A1, A2, A3, and A4.

Now we are ready for the main (and only) theorem of this article.

THEOREM. There are exactly two equivalence classes of mini-Sudokus:

C1: All mini-Sudokus with the following partition types:

({α, α}, {β, β}) ({α, α}, {γ, γ }) ({β, β}, {γ, γ })
({β, β}, {α, α}) ({γ, γ }, {α, α}) ({γ, γ }, {β, β})

C2: All mini-Sudokus with the following partition types:

({α, α}, {β, γ }) ({β, β}, {α, γ }) ({γ, γ }, {α, β})
({β, γ }, {α, α}) ({α, γ }, {β, β}) ({α, β}, {γ, γ })

Proof. We know already that there are at least two distinct equivalence classes.
Let X be a mini-Sudoku. By applying a suitable relabeling symmetry, the top left box

of X can be put in the form 1 2
3 4

, and so X is equivalent to one of the 12 mini-Sudokus

A1, A2, . . . , C3, C4. From the above discussion, X is equivalent to either A1 or B1. But
we have seen already that, if X is equivalent to A1, then its partition type is as described
in C1, and if X is equivalent to B1, then its partition type is as described in C2.

(A similar argument in [8] purports to demonstrate the same result; in fact, the line
of reasoning in that article shows only that there are at most two equivalence classes.
What is missing is an invariant to distinguish the two classes.)

There are exactly 24 mini-Sudokus L-equivalent to each of A1, A2, . . . , C3, C4, and
hence there are 4 · 24 = 96 mini-Sudokus in C1 and 8 · 24 = 192 mini-Sudokus in C2.

Since we now know the partition types that are in each of the equivalence classes,
it is easy to see that the converse of Rule 3 holds, that is, mini-Sudokus X and Y are
equivalent if and only if [X] and [Y] are equivalent.

Notice that the mini-Sudokus A1, A2, A3, and A4 have either two or four distinct entries
on the main diagonal, whereas the mini-Sudokus B1, B2, . . . , C3, C4 have exactly three
distinct entries on the main diagonal. Since any mini-Sudoku is L-equivalent to one
of these 12, and the number of distinct entries on the main diagonal is unchanged by
relabeling symmetries, it now quite easy to tell which equivalence class a mini-Sudoku
X belongs to. If X has two or four distinct entries on the main diagonal it must be L-
equivalent to A1, A2, A3, or A4, and so X is in C1. If X has three distinct entries on the
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main diagonal it must be L-equivalent to one of B1, B2, . . . , C3, C4, and so X is in C2.
Hence the diagonal entries of X suffice to determine its equivalence class.

It is, of course, easier to count entries along the main diagonal of a mini-Sudoku than
to write down its partition type. So why bother with partition types at all? The reason is
that they are better suited for weaker forms of equivalence, such as R × C-equivalence
and H -equivalence. In fact, the following converses to Rules 1 and 2 assert that [·] is
a complete invariant of mini-Sudokus, modulo R × C-equivalence and that [·]H is a
complete invariant with respect to H -equivalence:

PROPOSITION. Let X and Y be mini-Sudokus.

(1) If [X] = [Y], then X and Y are R × C-equivalent.

(2) If [X]H = [Y]H , then X and Y are H-equivalent.

Proof. (1) Suppose [X] = [Y]. Recall that Row 1 and Row 2 of X are associated
with the same partition—either α, β, or γ —and that the same is true of Rows 3 and 4.
For convenience, we will call these four partitions, in order, the row partitions of X.

It may be that the row partitions of X match (row for row) the row partitions of
Y, in which case let Y1 = Y. If this is not the case, then, since [X] = [Y], applying
the blockwise row symmetry that switches Rows 1 and 2 with Rows 3 and 4 to Y,
yields a mini-Sudoku Y1 whose row partitions match those of X. Similarly, by applying
a blockwise column symmetry to Y1 if necessary, we obtain a mini-Sudoku Y2 such
that both the row and column partitions of X and Y2 match up, and such that Y2 is
R × C-equivalent to Y.

The two row symmetries that switch Rows 1 and 2, and Rows 3 and 4, and the two
column symmetries that switch Columns 1 and 2, and Columns 3 and 4, can be used
to put any mini-Sudoku into the form

1 * * *
* * * *
* * 1 *
* * * *

.

Moreover, this can be done without changing row and column partitions. So by ap-
plying this procedure to Y2, we obtain a mini-Sudoku Y3, which is R × C-equivalent to
Y2, such that X and Y3 have this special form, in addition to having matching row and
column partitions.

Since X and Y3 have the same top row partition, it follows that they have the same
entries in Row 1, Column 2. Similarly, using the leftmost column partition, we see
they have the same entries in Row 2, Column 1. Thus, they have the same upper-left
block. Likewise, we find that they have the same lower-right block. We can then use
the Rule of One to fill in the remaining entries in the grid and conclude that X = Y3.
The result follows.

(2) We know that [X] = [Y] or [X] = [Y]T. So by (1), X is R × C-equivalent to Y or
to YT. In either case, X is H -equivalent to Y.

More mini-Sudoku puzzles

Though we now know how many mini-Sudokus there are and how many of them are
essentially different, many mini-Sudokus puzzles remain for the reader to solve. Here
are some suggestions:
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1. According to the theorem, if X is a mini-Sudoku, then [X] = ({α, α}, {α, α}), [X] =
({α, β}, {α, β}), [X] = ({α, α}, {α, β}), and [X] = ({α, β}, {α, γ }) are not possible.
Show directly that it is not possible for a row partition to equal a column partition.

2. For a mini-Sudoku X, let det X be the determinant of X thought of as a 4 × 4 matrix.
Then det X is unchanged or changes sign under the symmetries in H . Hence, if X
and Y are H -equivalent, then | det X| = | det Y|. Is the converse true?

It might be useful to replace the entries, 1, 2, 3 and 4, by variables, w, x , y and
z, so that det X is a polynomial in the four variables. For example,

det A1 = det

⎡
⎢⎣

w x y z
y z w x
x w z y
z y x w

⎤
⎥⎦

= −(w + x − y − z)(w + y − x − z)(w + z − x − y)(w + x + y + z)

How do these determinants change under relabeling symmetries? Can such deter-
minants be used to determine whether mini-Sudokus are H -equivalent or equivalent?

3. Prove that R ∩ C = (R × C) ∩ Z = {id}.
4. Apply the reasoning from our article to Cayley-Sudoku tables [2]. How many 4 × 4

Cayley-Sudoku tables are there? Is there a natural group action on the set of all
Cayley-Sudoku tables of a fixed size? With respect to that group action, how many
equivalence classes are there, and can you find a complete invariant to distinguish
them?
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Computing the eigenvalues of a general complex matrix can be hard, but finding re-
gions in the complex plane that contain them is surprisingly easy. One way to obtain
eigenvalue inclusion regions is to form the Gershgorin disks, centered at the diagonal
elements of the matrix. In this note we focus on a lesser known complementary re-
sult about where not to look for eigenvalues, which was obtained by Parodi ([4]) and
Schneider ([5]).

We give a standard proof of Gershgorin’s theorem and show how it can be continued
in a natural way to derive the Parodi-Schneider inclusion regions, which consist of
fragments of the Gershgorin disks. After deriving them, we will give some examples,
including an application to the location of polynomial zeros.

Parodi ([4]) obtained his result as a consequence of a theorem in [3]. The Parodi
and Schneider results are summarized and discussed in [7, p. 73–79, 95]. Gershgorin’s
theorem originally appeared in [1], but a proof can also be found in textbooks ([2,
p. 344–345]).

Historically, Lucien Lévy was already aware in 1881 of an equivalent formulation of
Gershgorin’s theorem, albeit for real matrices only, and independent rediscoveries of
this theorem were made in subsequent years by many mathematicians ([6]). Eigenvalue
inclusion sets are a rich subject area and we refer to [2], [7], and the many references
therein for more advanced results.

Disk fragments Gershgorin’s theorem states that all the eigenvalues of an n × n
complex matrix A = [ai j ] are contained in the union of n disks, each centered at a
diagonal element app of the matrix. The radius of each disk is equal to the deleted row
sum corresponding to the diagonal element, which is the sum of the absolute values of
all nondiagonal elements in that row:

R′
p(A) =

n∑
j=1
j �=p

|apj |.

(Since all of our sums cover j = 1, . . . , n, from now on we will write
∑

j �=p, for
example, instead of

∑n
j=1
j �=p

.) The accompanying Gershgorin disk is

�R
p (A) = {

z ∈ C : |z − app| ≤ R′
p(A)

}
.

Math. Mag. 83 (2010) 123–129. doi:10.4169/002557010X482880. c© Mathematical Association of America
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Gershgorin’s theorem is:

THEOREM 1. All the eigenvalues of the n × n complex matrix A are located in

n⋃
p=1

�R
p (A) ≡ �R(A).

An analogous statement holds for the columns of the matrix because the eigenvalues
of A and AT are identical. To avoid repetition we concentrate on the rows only.

As illustration, in FIGURE 1 one finds the Gershgorin disks �R
i (A1) (left, shaded

area) that make up the Gershgorin set �R(A1) (right, shaded area) for the matrix

A1 =
⎛
⎜⎝

14 i 0 18 − 2i
0 16 4 + i 0

1 + i 4 + i 11 0
14 + i 0 1 + i 10

⎞
⎟⎠ ,

where i2 = −1. The white dots in the Gershgorin set indicate the eigenvalues of the
matrix. We note that although the union of all disks must contain all eigenvalues, an
individual disk need not contain an eigenvalue.

Figure 1 The four Gershgorin disks (left) for the matrix A1 and their union (right).

The proof of Gershgorin’s theorem relies on basic matrix concepts only.
Assume that λ is an eigenvalue of the n × n complex matrix A = [ai j ] with corre-

sponding eigenvector x , i.e., Ax = λx . Since x is an eigenvector, it has at least one
nonzero component. Let xp be a component of x with the largest absolute value, so
that |xp| ≥ |x j | for all j = 1, 2, . . . , n and xp �= 0. Because (Ax)p = (λx)p, we have

λxp = appxp +
∑
j �=p

apj x j .

From this it follows that

(λ − app)xp =
∑
j �=p

apj x j .

Taking absolute values on both sides, using the triangle inequality, and dividing
through by |xp| yields

|λ − app| ≤
∑
j �=p

|apj | |x j |
|xp| ≤

∑
j �=p

|apj | = R′
p(A),
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because |x j |/|xp| ≤ 1 for all j �= p, i.e., λ lies in a disk with center app and radius
R′

p(A). We do not know which p each eigenvalue corresponds to, so we must take the
union of all such disks to obtain a region that is guaranteed to contain all eigenvalues.
Here ends the standard proof.

But why stop here? Why not also consider the other components? For any q �= p,
we have

λxq = aqp xp + aqq xq +
∑
j �=p,q

aq j x j ,

so that

aqpxp = (λ − aqq)xq −
∑
j �=p,q

aq j x j .

Taking absolute values as before and dividing through by |xp| yields

|aqp| ≤ |λ − aqq | |xq |
|xp| +

∑
j �=p,q

|aq j | |x j |
|xp| ≤ |λ − aqq | +

∑
j �=p,q

|aq j |,

because we still have |x j |/|xp| ≤ 1 for all j �= p. We finally obtain the additional
inequality

|λ − aqq | ≥ |aqp| −
∑
j �=p,q

|aq j | = 2|aqp| − R′
q(A). (1)

This inequality has the effect of excluding λ from an open disk centered at aqq and
having radius 2|aqp| − R′

q(A). We call this an exclusion disk. It is nontrivial only when
the radius is positive. Note that the Gershgorin disk is determined by row p, while the
exclusion disk is determined by row q—with a special role for aqp .

There is an exclusion disk for every q �= p. Forming their union and removing that
union from the Gershgorin disk gives a new, smaller inclusion set corresponding to p.
Such a set is a disk fragment.

Define

�R
pq(A) = {

z ∈ C : |z − aqq | ≥ 2|aqp| − R′
q(A)

}
,

�R
p (A) =

n⋃
q=1
q �=p

�R
pq(A),

and
�R

p (A) = �R
p (A) \ �R

p (A).

We have proved the following theorem:

THEOREM 2. All the eigenvalues of an n × n complex matrix A are located in the
union of n disk fragments

n⋃
p=1

�R
p (A) ≡ �R(A).

This union is contained in the Gershgorin set �R(A).

Theorem 2 is precisely the Parodi-Schneider result.
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The right-hand side of

|λ − aqq | ≥ 2|aqp| − R′
q(A)

with given q is strictly positive for at most one index p. This is trivially true for n = 2.
To show that it is true for n ≥ 3, assume that there are two such indices, namely, p and
�, i.e.,

2|aqp| > R′
q(A) and 2|aq�| > R′

q(A). (2)

Defining the nonnegative number α = R′
q(A) − |aqp| − |aq�|, we can rewrite (2) as

|aqp| − |aq�| > α and |aq�| − |aqp| > α.

Since a real number and its opposite cannot be both strictly greater than zero, we have
arrived at a contradiction.

The inequality in (1) is trivially satisfied if 2|aqp| ≤ R′
q(A). It is easy to find matri-

ces where, for given q, 2|aqp| ≤ R′
q(A) for all p �= q. The matrices

⎛
⎝2 4 4

2 1 2
0 4 1

⎞
⎠ and

⎛
⎝1 1 1

2 1 2
1 1 0

⎞
⎠

are examples of that for q = 1, 2 and q = 1, 2, 3, respectively.
On the other hand, it is also possible that �R

k (A) = ∅ for some index k, which would
mean that for no eigenvector does the kth component of any eigenvector associated
with it have the largest absolute value.

Although individual disk fragments �R
p (A) can look very different from Gershgorin

disks, it is quite common for their union to coincide with the Gershgorin set. This is
illustrated in FIGURE 2 for the matrix

A2 =
⎛
⎜⎝

1 i 0 10
0 16 4 + i 0
2i 4 10 0
4 0 1 + i 10

⎞
⎟⎠ ,

where one finds, on the left (shaded area), the sets �R
p (A2) and, on the right (shaded

area), their union, which is the same as the Gershgorin set. The eigenvalues of A2 are
indicated by white dots.

Figure 2 The four Gershgorin disks (left) for the matrix A2 and their union (right).
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The more interesting cases are the ones for which the union of disk fragments is
different from the Gershgorin set, as for the example in FIGURE 3. There one finds,
on the left (shaded area), the sets �R

p (A1) for the matrix A1 used in FIGURE 1 and, on
the right (shaded area), their union. The eigenvalues of A1 are once again indicated by
white dots.

Figure 3 The four Gershgorin disk fragments (left) and their union (right) for the matrix
A1.

An invertibility criterion Just as for Gershgorin’s theorem, Theorem 2 gives an
invertibility criterion for matrices: zero does not lie in the eigenvalue inclusion set.
For Gershgorin’s theorem this leads to the condition of strict diagonal dominance
(the Lévy-Desplanques theorem ([2, p. 302])). Likewise, requiring that zero not lie
in �R(A) leads directly to the following theorem.

THEOREM 3. An n × n complex matrix A is nonsingular if for each p = 1, 2, . . . , n
either |app| > R′

p(A) or |aqq | < 2|aqp| − R′
q(A) for some q �= p.

This is a sufficient but not a necessary conditon for invertibility.
FIGURES 1 and 2 make clear that the Lévy-Desplanques theorem cannot determine

the invertibility of A1, whereas the Gershgorin disk fragment set clearly shows A1 to
be invertible.

More examples Consider the matrices

A3 =
⎛
⎜⎝

11 1 1 11 + i
0 2 14 + i 0

1 + i 10 + i 2 + i 1
12 + i i 1 12 + i

⎞
⎟⎠

and

A4 =
⎛
⎜⎝

15 + i 1 + i 0 14 + i
0 11 4 + i 0
0 9 14 + i i
14 1 0 14

⎞
⎟⎠ .

Their Gershgorin disk fragment sets (�R) are the shaded areas in FIGURE 4. Their
respective Gershgorin sets would cover all of the interior white areas.
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Figure 4 The Gershgorin disk fragment sets for the eigenvalues of A3 (left) and A4 (right).

Zeros of polynomials Eigenvalue inclusion sets can be used to locate zeros of poly-
nomials by using the polynomial’s companion matrix, whose characteristic polynomial
is the given polynomial ([2, p. 146]). Thus, its eigenvalues are the zeros of the poly-
nomial. The companion matrix of a monic polynomial p(z) = zn + αn−1zn−1 + · · · +
α1z + α0 is

C(p) =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 −α0

1 0 . . . 0 −α1

0 1 . . . 0 −α2
...

...
...

...
...

0 0 . . . 1 −αn−1

⎞
⎟⎟⎟⎟⎠ .

FIGURE 5 shows �R (left, shaded area) and �R (right, shaded area) for C(p1), with
p1(z) = z4 − z3 + 0.2z2 − 0.1z + 2. The zeros are indicated by the white dots.

Figure 5 �R (left) and �R (right) for C(p1).

The simple structure of the companion matrix makes it easy to consider special
cases. For monic polynomials with |α j | < 1 for all j = 0, . . . , n − 1, one can show
that

n−2⋃
i=2

�R
i (A) =

{
z ∈ C : 1 − max

2≤ j≤n−2
|α j | ≤ |z| ≤ 1 + max

1≤ j≤n−3
|α j |

}
,

so that the union of all but three disk fragments is given by an annulus centered at the
origin. That makes this case simple enough to draw the Gershgorin disk fragment set
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�R by hand with just paper and compass, regardless of the degree of the polynomial. In
FIGURE 6, the shaded areas show the Gershgorin disk fragment sets for the companion
matrices of p2(z) = z8 + 0.5z7 + 0.2z6 + 0.15z5 + 0.3z4 + 0.1z3 + 0.2z2 + 0.1z +
0.8 (left) and p3(z) = z8 + 0.01z7 + 0.02z6 + 0.04z5 + 0.02z4 + 0.01z3 + 0.02z2 +
0.04z + 1 (right), with the zeros of the polynomials indicated by the white dots. The
respective Gershgorin sets cover all of the interior unshaded area.

Finally, the zeros of p(z) = zn + 1 are just the nth roots of −1. The Gershgorin set
�R for C(p) is the unit disk, whereas the Gershgorin disk fragment set �R for C(p)

is the unit circle.
We conclude by noting that exclusion sets can also be obtained for a polynomial

p(z) of degree n with a nonzero constant term by applying Gershgorin’s theorem to
the companion matrix of the polynomial zn p(1/z) whose zeros are the reciprocals of
the zeros of p(z) ([2, p. 318]).

Figure 6 �R for C(p2) (left) and C(p3) (right).
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Summary Eigenvalue inclusion regions for a general complex matrix can be found by forming the Gershgorin
disks, centered at the diagonal elements of the matrix. We give a standard proof of Gershgorin’s theorem and
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to the location of polynomial zeros.
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The wildly popular Sudoku puzzles [2] are 9 × 9 arrays divided into nine 3 × 3 sub-
arrays or blocks. Digits 1 through 9 appear in some of the entries. Other entries are
blank. The goal is to fill the blank entries with the digits 1 through 9 in such a way that
each digit appears exactly once in each row and in each column, and in each block.
TABLE 1 gives an example of a completed Sudoku puzzle.

TABLE 1: A completed Sudoku puzzle

9 3 6 1 4 7 2 5 8

1 4 7 2 5 8 3 6 9

2 5 8 3 6 9 4 7 1

3 6 9 4 7 1 5 8 2

4 7 1 5 8 2 6 9 3

5 8 2 6 9 3 7 1 4

6 9 3 7 1 4 8 2 5

7 1 4 8 2 5 9 3 6

8 2 5 9 3 6 1 4 7

One proves in introductory group theory that every element of any group appears
exactly once in each row and once in each column of the group’s operation or Cayley
table. (In other words, any Cayley table is a Latin square.) Thus, every Cayley table
has two-thirds of the properties of a Sudoku table; only the subdivision of the table into
blocks that contain each element exactly once is in doubt. A question naturally leaps
to mind: When and how can a Cayley table be arranged in such a way as to satisfy the
additional requirements of being a Sudoku table? To be more specific, group elements
labeling the rows and the columns of a Cayley table may be arranged in any order.
Moreover, in defiance of convention, row labels and column labels need not be in the
same order. Again we ask, when and how can the row and column labels be arranged
so that the Cayley table has blocks containing each group element exactly once?

For example, TABLE 2 shows that the completed Sudoku puzzle in TABLE 1 is
actually a Cayley table of Z9 := {1, 2, 3, 4, 5, 6, 7, 8, 9} under addition modulo 9. (We
use 9 instead of the usual 0 in order to maintain the Sudoku-like appearance.)

Math. Mag. 83 (2010) 130–139. doi:10.4169/002557010X482899. c© Mathematical Association of America
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TABLE 2: A Cayley table of Z9 with
Sudoku properties

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1

3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4

6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

As a second example, consider A4, the alternating group on 4 symbols. We seek to
arrange its elements as row and column labels so that the resulting Cayley table forms a
Sudoku-like table, one in which the table is subdivided into blocks such that each group
element appears exactly once in each block (as well as exactly once in each column
and in each row, which, as noted, is always so in a Cayley table). TABLE 3 shows such
an arrangement with 6 × 2 blocks. (In constructing the table, we operate with the row
label on the left and column label on the right. Permutations are composed right to left.
For example, the entry in row (14)(23), column (134) is (14)(23)(134) = (123).)

We say TABLES 2 and 3 are Cayley-Sudoku tables of Z9 and A4, respectively. In
general, a Cayley-Sudoku table of a finite group G is a Cayley table for G subdivided
into uniformly sized rectangular blocks in such a way that each group element appears
exactly once in each block.

Uninteresting Cayley-Sudoku tables can be made from any Cayley table of any
group by simply defining the blocks to be the individual rows (or columns) of the
table. Our goal in this note is to give three methods for producing interesting tables
using cosets, thereby uncovering new applications of this fundamental idea. (Any in-
troductory group theory text reviews the concept of cosets, for example, Gallian [1,
Ch. 7].)

Cosets Revisit TABLE 2. The cyclic subgroup generated by 3 in Z9 is 〈3〉 = {9, 3, 6}.
The right and left cosets of 〈3〉 in Z9 are 〈3〉 + 9 = {9, 3, 6} = 9 + 〈3〉, 〈3〉 + 1 =
{1, 4, 7} = 1 + 〈3〉, and 〈3〉 + 2 = {2, 5, 8} = 2 + 〈3〉. With only a little prompting, we
quickly see that the columns in each block are labeled by elements of right cosets of 〈3〉
in Z9. Each set of elements labeling the rows of a block contains exactly one element
from each left coset. Equivalently, the row labels partition Z9 into complete sets of
left coset representatives of 〈3〉 in Z9. (Momentarily we shall see why we bothered to
distinguish between right and left.)

Reexamining TABLE 3 reveals a similar structure. Consider the subgroup H :=
〈(12)(34)〉 = {(1), (12)(34)}. We brush-up on composing permutations (right to left)
by calculating the right coset H(123) = {(1)(123), (12)(34)(123)} = {(123), (243)}
and the corresponding left coset {(123)(1), (123)(12)(34)} = {(123), (134)}. In that
fashion, we find the right cosets to be

H(1) = {(1), (12)(34)}, H(142) = {(142), (134)},
H(13)(24) = {(13)(24), (14)(23)}, H(132) = {(132), (143)},

H(123) = {(123), (243)}, H(234) = {(234), (124)},
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while the left cosets are

(1)H = {(1), (12)(34)}, (243)H = {(243), (142)},
(13)(24)H = {(13)(24), (14)(23)}, (132)H = {(132), (234)},

(123)H = {(123), (134)}, (143)H = {(143), (124)}.
This time we know what to expect. Sure enough, the columns in TABLE 3 are labeled
by the elements of the distinct right cosets of H in A4 while the row labels partition
A4 into complete sets of left coset representatives of H in A4.

Those examples illustrate our first general construction.
Before proceeding, let us agree upon a convention for labeling a Cayley table. When

a set is listed in a row or column of the table, it is to be interpreted as the individual
elements of that set being listed in separate rows or columns, respectively. For example,
under that convention, the rows and columns of TABLE 2 could be labeled

{9, 3, 6} {1, 4, 7} · · ·
{9, 1, 2}
{3, 4, 5}

...

where the label {9, 1, 2} is interpreted as the elements 9, 1, and 2 listed vertically, one
per row, and {9, 3, 6} is interpreted as the elements 9, 3, and 6 listed horizontally, one
per column.

CAYLEY-SUDOKU CONSTRUCTION 1. Let G be a finite group. Assume H is a
subgroup of G having order k and index n (so that |G| = nk). If Hg1, Hg2, . . . , Hgn

are the n distinct right cosets of H in G, then arranging the Cayley table of G with
columns labeled by the cosets Hg1, Hg2, . . . , Hgn and the rows labeled by sets
T1, T2, . . . , Tk (as in TABLE 4) yields a Cayley-Sudoku table of G with blocks of
dimension n × k if and only if T1, T2, . . . , Tk partition G into complete sets of left
coset representatives of H in G.

TABLE 4: Construction 1 using right cosets and
left coset representatives

Hg1 Hg2 · · · Hgn

T1

T2

...

Tk

Furthermore, if y1 H, y2 H, . . . , yn H are the n distinct left cosets of H in G, then
arranging the Cayley table of G with rows labeled by the cosets y1 H, y2 H, . . . , yn H
and the columns labeled by sets R1, R2, . . . , Rk yields a Cayley-Sudoku table of G
with blocks of dimension k × n if and only if R1, R2, . . . , Rk partition G into complete
sets of right coset representatives of H in G.
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Note that the second version of the Construction 1 is dual to the first, obtained by
reversing the left with right and rows with columns.

Now let us prove the correctness of the construction for the case of right cosets. An
arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and Hgi , is the given the
following table.

Hgi

t1 t1 Hgi
t2 t2 Hgi
...

...

tn tn Hgi

The elements in the block are the elements of the set B := t1 Hgi ∪ t2 Hgi ∪ · · · ∪
tn Hgi = (t1 H ∪ t2 H ∪ · · · ∪ tn H)gi , the equality being a routine exercise. We want to
show that the elements of G appear exactly once in that block if and only if Th is a
complete set of left coset representatives of H in G.

If Th is a complete set of left coset representatives, then t1 H ∪ t2 H ∪ · · · ∪ tn H =
G. So we have B = Ggi = G. Thus every element of G appears in every block. But
the number of entries in the block is nk and the order of G is nk, so every element of
G appears exactly once in each block.

On the other hand, if every element appears exactly once in each block, then B = G
and that gives us G = Gg−1

i = Bg−1
i = t1 H ∪ t2 H ∪ · · · ∪ tn H . There are n cosets

in this union, each having order k. Therefore, since the union of those cosets is the
entire group G and |G| = nk, we must have n distinct cosets in the union. Thus,
{t1, t2, . . . , tn} is a complete set of left coset representatives of H in G, as claimed.

The first punch line of this section is that any proper nontrivial subgroup of a finite
group gives rise to interesting Cayley-Sudoku tables by using Construction 1. There-
fore, any finite group having a proper nontrivial subgroup (which is to say, any finite
group whose order is not a prime) admits an interesting Cayley-Sudoku table.

We now introduce another construction using cosets. This construction is like-
handed, that is, it uses left cosets and left coset representatives (or right and right).
Construction 1 is cross-handed, meaning that it uses right cosets and left coset repre-
sentatives or left cosets and right coset representatives.

For this construction, we recall a standard group theoretic definition. For any sub-
group H of a group G and for any g ∈ G, g−1 Hg := {g−1hg : h ∈ H} is called a
conjugate of H and is denoted H g. It is routine to show H g is a subgroup of G. In-
stead of using cross-handed coset representatives, it works to use like-handed coset
representatives of conjugates.

CAYLEY-SUDOKU CONSTRUCTION 2. Assume H is a subgroup of G having or-
der k and index n. Also suppose t1 H, t2 H, . . . , tn H are the distinct left cosets of H in
G. Arranging the Cayley table of G with columns labeled by the cosets t1 H, t2 H, . . . ,

tn H and the rows labeled by sets L1, L2, . . . , Lk yields a Cayley-Sudoku table of G
with blocks of dimension n × k if and only if L1, L2, . . . , Lk are complete sets of left
coset representatives of H g for all g ∈ G.

Since one or two interesting subtleties arise, we verify the correctness of Construc-
tion 2. Consider an arbitrary block in the table, indexed by Li := {gi1, gi2, . . . , gin}
and t j H . Note, however, that t j H = t j Ht−1

j t j = H t−1
j t j . Thus, our block is

gi1 H t−1
j t j ∪ gi2 H t−1

j t j ∪ · · · ∪ g1n H t−1
j t j = (

gi1 H t−1
j ∪ · · · ∪ gin H t−1

j
)
t j .
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TABLE 5: Construction 2 using left
cosets and left coset representatives

t1 H t2 H · · · tn H

L1

L2

...

Lk

Suppose L1, L2, . . . , Lk are complete sets of left coset representatives of H g for
all g ∈ G, then Li = {gi1, gi2, . . . , gin} is a complete set of left coset representatives

of H t−1
j . Therefore, just as in the verification of Construction 1, we can show every

element of G appears exactly once in the block.
Conversely, suppose every element of G appears exactly once in each block. Once

again arguing as in Construction 1, we conclude each Li is a complete set of left coset
representatives of H t j for every j .

In order to finish, we need a (known) result of independent group theoretic interest.
Namely, with notation as in the construction, for every g ∈ G, there exists t j such

that H g = H t−1
j . To see this, let g ∈ G, then g−1 is in some left coset of H , say t j H .

Thus, g−1 = t j h for some h ∈ H . Armed with the observation h Hh−1 = H (easily
shown since H is a subgroup), we hit our target: H g = g−1 Hg = (t j h)H(h−1t−1

j ) =
t j (h Hh−1)t−1 = t j Ht−1

j = H t−1
j . Combining this with the preceding paragraph, we

can conclude L1, L2, . . . , Lk are complete sets of left coset representatives of H g for
all g ∈ G, as claimed.

We invite the reader to formulate and verify a right-handed version of Construction
2. We also raise an interesting and, evidently, nontrivial question for further investi-
gation. Under what circumstances can one decompose a finite group G in the way
required by Construction 2?

There is one easy circumstance. If H is a normal subgroup of a G, then it is not
difficult to show H g = H for every g ∈ G [1, Ch. 9]. Thus, decomposing G into
complete sets of left coset representatives of H will do the trick. Sadly, in that case,
Construction 2 gives the same Cayley-Sudoku table as Construction 1 because the left
cosets indexing the columns equal the corresponding right cosets by normality.

Happily, we know of one general circumstance in which we can decompose G in
the desired way to obtain new Cayley-Sudoku tables. It is described in the following
proposition, stated without proof.

PROPOSITION. Suppose the finite group G contains subgroups T := {t1, t2, . . . , tn}
and H := {h1, h2, . . . , hk} such that G = {th : t ∈ T , h ∈ H} := T H and T ∩ H =
{e}, then the elements of T form a complete set of left coset representatives of H and
the cosets T h1, T h2, . . . , T hk decompose G into complete sets of left coset represen-
tatives of H g for every g ∈ G.

In other words, from the Proposition, Construction 2 applies when we set Li := T hi

and use the left cosets t1 H, t2 H, . . . , tn H . Let us try it out on the group S4, which can
be decomposed in terms of a subgroup of order 8 and a subgroup generated by a single
permutation of order 3.

Let H = 〈(123)〉 = {(1), (123), (132)} and T = {(1), (12)(34), (13)(24), (14)(23),

(24), (1234), (1432), (13)}. One can check (by brute force, if necessary) that H and T
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are subgroups of S4 satisfying the hypotheses of the Proposition. Therefore, according
to Construction 2, the following table yields a Cayley-Sudoku table of S4.

H (12)(34)H (13)(24)H (14)(23)H (24)H (1234)H (1432)H (13)H

T

T (123)

T (132)

Seeking to be convinced that is a new Cayley-Sudoku table, not of the kind pro-
duced by Construction 1, we examine the sets indexing the columns and rows. In
Construction 1, the sets indexing columns are right cosets of some subgroup or else
the sets indexing the rows are left cosets of some subgroup. In our table, the only sub-
group indexing the columns is H and most of the remaining index sets are not right
cosets of H . For example, (12)(34)H �= H(12)(34) and so it is not a right coset of H .
Similar consideration of the sets indexing the rows shows Construction 1 was not on
the job here.

Extending Cayley-Sudoku tables Our final construction shows a way to extend a
Cayley-Sudoku table of a subgroup to a Cayley-Sudoku table of the full group.

CAYLEY-SUDOKU CONSTRUCTION 3. Let G be a finite group with a subgroup A.
Let C1, C2, . . . , Ck partition A and R1, R2, . . . , Rn partition A in any way such that
the following table is a Cayley-Sudoku table of A.

C1 C2 · · · Ck

R1

R2

...

Rn

If {l1, l2, . . . , lt} and {r1, r2, . . . , rt} are complete sets of left and right coset represen-
tatives, respectively, of A in G, then arranging the Cayley table of G with columns la-
beled with the sets Cir j , i = 1, . . . , k, j = 1, . . . , t and the bth block of rows labeled
with l j Rb, j = 1, . . . , t , for b = 1, . . . , n (as in TABLE 6) yields a Cayley-Sudoku
table of G with blocks of dimension tk × n.

Proving the correctness of Construction 3 is quite like the proof for Construction 1.
We leave it as an exercise for the reader and proceed to an example. Working in the
group Z8 := {0, 1, 2, 3, 4, 5, 6, 7} under addition modulo 8, let us apply Construction
1 to form a Cayley-Sudoku table for the subgroup 〈2〉 and then extend that table to a
Cayley-Sudoku table of Z8 via Construction 3.

Observe that 〈4〉 = {0, 4} is a subgroup of 〈2〉 = {0, 2, 4, 6}. The left and right
cosets of 〈4〉 in 〈2〉 are 0 + 〈4〉 = {0, 4} = 〈4〉 + 0 and 2 + 〈4〉 = {2, 6} = 〈4〉 + 0.
Thus, {0, 2} and {4, 6} partition 〈2〉 into complete sets of right coset representatives.
Applying Construction 1, wherein elements of left cosets label the rows and right coset
representatives label the columns, yields TABLE 7.

Now the left and right cosets of 〈2〉 in Z8 are 0 + 〈2〉 = {0, 2, 4, 6} = 〈2〉 + 0 and
1 + 〈2〉 = {1, 3, 5, 7} = 〈2〉 + 1. Accordingly, {0, 1} is a complete set of left and right
coset representatives of 〈2〉 in Z8. According to Construction 3, TABLE 8 should be
(and is, much to our relief) a Cayley-Sudoku table of Z8. For easy comparison with
TABLE 6, rows and columns are labeled both with sets and with individual elements.
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TABLE 6: Construction 3

C1r1 C2r1 · · · Ckr1 C1r2 · · · Ckr2 · · · C1rt · · · Ckrt

l1 R1
l2 R1

...

lt R1

l1 R2
...

lt R2

...

l1 Rn
...

lt Rn

TABLE 7: Construction 1
applied

0 2 4 6

0 0 2 4 6
4 4 6 0 2

2 2 4 6 0
6 6 0 2 4

We chose Z8 for our example because it has enough subgroups to make Con-
struction 3 interesting, yet the calculations are easy to do and the resulting table fits
easily on a page. In one sense, however, the calculations are too easy. Since Z8 is
abelian, all the corresponding right and left cosets of any subgroup are equal. (In other
words, all the subgroups are normal.) Thus, the role of right versus left in Construc-
tion 3 is obscured. The interested reader may wish to work out an example where
right and left cosets are different. For instance, in S4, one could consider the sub-
group A := {(1), (12)(34), (13)(24), (14)(23), (24), (1234), (1432), (13)}. Use Con-
struction 1 with the subgroup 〈(24)〉 of A to obtain a Cayley-Sudoku table of A, then

TABLE 8: A Cayley-Sudoku table of Z8 from Construction 3

{0, 2} + 0 {0, 2} + 1 {4, 6} + 0 {4, 6} + 0
0 2 1 3 4 6 5 7

0 + {0, 4} 0 0 2 1 3 4 6 5 7
4 4 6 5 7 0 2 1 3

1 + {0, 4} 1 1 3 2 4 5 7 6 0
5 5 7 6 0 1 3 2 4

0 + {2, 6} 2 2 4 3 5 6 0 7 1
6 6 0 7 1 2 4 3 5

1 + {2, 6} 3 3 5 4 6 7 1 0 2
7 7 1 0 2 3 5 4 6
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apply Construction 3 to extend that table to a Cayley-Sudoku table of S4. The associ-
ated computations are manageable (barely, one might think by the end!) and the roles
of right and left are more readily apparent.

TABLE 8 is a new sort of Cayley-Sudoku table, one not produced by either of Con-
structions 1 or 2. To see why, recall that in Construction 1 and 2 (including the right-
handed cousin of 2), either the columns or the rows in the blocks are labeled by cosets
of a subgroup. One of those cosets is, of course, the subgroup itself. However, we eas-
ily check that none of the sets labeling columns or rows of the blocks in TABLE 8 are
subgroups of Z8.

A puzzle The ubiquitous Sudoku leads many students to treat the familiar exercise
of filling in the missing entries of a partial Cayley table as a special sort of Sudoku
puzzle. In a recent group theory course taught by the third author, several students
explained how they deduced missing entries in such an exercise [1, p. 55, exercise 25],
by writing “I Sudokued them.” Meaning they applied Sudoku-type logic based on the
fact that rows and columns of a Cayley table contain no repeated entries.

We extend that notion by including a Cayley-Sudoku puzzle for the reader. It re-
quires both group theoretic and Sudoku reasoning. The group theory required is very
elementary. (In particular, one need not use the classification of groups of order 8.)

The puzzle has three parts, one for entertainment and two to show this is truly a new
sort of puzzle. First, complete TABLE 9 with 2 × 4 blocks as indicated so that it be-
comes a Cayley-Sudoku table. Do not assume a priori that TABLE 9 was produced by
any of Constructions 1–3. Second, show group theoretic reasoning is actually needed
in the puzzle by completing TABLE 9 so that it satisfies the three Sudoku properties
for the indicated 2 × 4 blocks but is not the Cayley table of any group. Third, show
Sudoku reasoning is required by finding another way to complete TABLE 9 so that it
is a Cayley table of some group, but not a Cayley-Sudoku table.

TABLE 9: A Cayley-Sudoku puzzle (answers
on p. 147)

1 2 3 4 5 6 7 8

1 7
5 1

2 1
6 1

3 7
7 6 1

4
8 7

Ideas for further study By exhaustive (in more ways than one) analysis of cases,
the authors can show that the only 9 × 9 Cayley-Sudoku tables are those resulting
from Construction 1. Is the same true for p2 × p2 Cayley-Sudoku tables where p is a
prime?

All the constructions of Cayley-Sudoku tables known to the authors, including some
not presented in this paper, ultimately rely on cosets and coset representatives. Are
there Cayley-Sudoku constructions that do not use cosets and coset representatives?
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Related to the previous question, how does one create a single block of a Cayley-
Sudoku table? That is, if G is a group with subsets (not necessarily subgroups) K and
H such that |G| = |K ||H |, what tractable conditions guarantee that K H = G?

Can a Cayley-Sudoku table of a group be used to construct a Cayley-Sudoku table
of a subgroup or a factor group? Can a Cayley-Sudoku table of a factor group be used
to construct a Cayley-Sudoku table of the original group?

Are there efficient algorithms for generating interesting Cayley-Sudoku puzzles?
Making the definition of Cayley-Sudoku tables less restrictive can lead to some

interesting examples. For instance if the definition of Cayley-Sudoku tables is altered
so that the individual blocks of the table do not have to be of fixed dimension we obtain
in TABLE 10 an example of a generalized Cayley-Sudoku table of the group Z8.

TABLE 10: A Generalized Cayley-Sudoku table

0 4 1 3 5 7 2 6

0 0 4 1 3 5 7 2 6
1 1 5 2 4 6 0 3 7

2 2 6 3 5 7 1 4 0
3 3 7 4 6 0 2 5 1

4 4 0 5 7 1 3 6 2
5 5 1 6 0 2 4 7 3

6 6 2 7 1 3 5 0 4
7 7 3 0 2 4 6 1 5

What is a construction method for such generalized Cayley-Sudoku tables? How
about for jigsaw Cayley-Sudoku tables wherein the blocks are not rectangles?

Perhaps most interesting of all, find other circumstances under which Construction
2 applies.
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Proof Without Words: Mengoli’s Series

Pietro Mengoli posed the problem of summing the series below and found the sum for
the cases 1 ≤ k ≤ 10. [1]
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An interesting question from Euclidean plane geometry concerns the existence of lines
called equalizers that bisect both the perimeter and the area of a given region. The
answer is that equalizers always exist. Some issues regarding the meaning of length
and area should be handled, but relaxing them, a quick proof is not too difficult [2].

Expanding on the question of existence and focusing on triangles, G. Berzsenyi in
Quantum [1] conjectured that no triangle has more than three equalizers. A companion
conjecture by the Emeritus Professor H. Bailey states that no triangle has exactly two
equalizers. Our aim in this article is to obtain the number of equalizers for an arbitrary
triangle, proving the first conjecture (Proposition 1) and disproving the second one
(Proposition 2). This will provide at the same time a fairly detailed account of the
location of the equalizers. As a bonus, we witness the unexpected role of the angle
2 arcsin(−1 + √

2) ≈ 48◦56′23′′ in pinning down the number of triangle equalizers.

Searching for triangle equalizers As we look for the equalizers of a triangle, we
use its perimeter and area splitters, that is lines that bisect the perimeter or the area of
the triangle. With this terminology, a line is an equalizer whenever it is both an area
and a perimeter splitter.

The reader may have seen splitter defined in a more restricted way, as a line through
a vertex bisecting the perimeter, whereas a line with this property through the midpoint
of a side has been called a cleaver [3]. We intend no such restrictions.

Interestingly, the equalizers are just the area splitters through the triangle’s incenter.
This fact alone greatly reduces the possible locations for an equalizer. Its proof is quite
easy, and readers may wish to find it before proceeding.
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Figure 1 (a) All equalizers must go through the incenter (b) Any line through the incenter
of a triangle always cuts off from it a triangular region

In �ABC, any candidate for an equalizer, or a perimeter or area splitter, is a line �

missing at least one of the vertices, say A, intersecting the sides by this vertex at two
points, say AB at M and AC at N as in FIGURE 1(a). The common point I of � with
the interior angle bisector AA′ from A, has the same distance r from the sides AB and
AC. Let r ′ be its distance from BC. Fixing the notation for the sequel, we denote by
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a, b, c the side lengths of �ABC, and by A(F) the area of a region F . Trivially, � is a
perimeter splitter of �ABC if and only if

AM + AN = a + b + c

2
. (1)

Also, � being an area splitter of �ABC is equivalent to A(MAI) + A(IAN) =
A(MIB) + (BIC) + A(CIN), and writing each area as half the product of the side
opposite to I with its corresponding altitude, we find that � is an area splitter of �ABC
if and only if

(2(AM + AN) − (c + b)) r = ar ′. (2)

So, if � is an equalizer of �ABC, that is, both a perimeter and an area splitter, then
(1) and (2) imply r ′ = r , thus I is the incenter of �ABC.

Conversely, if I is the incenter of �ABC, that is r = r ′, then � being an area splitter
of �ABC is equivalent by (2) to [2(AM + AN ) − (c + b)])r = ar , and so to AM +
AN = (a + b + c)/2 which by (1) is equivalent to � being a perimeter splitter of the
triangle. We have proved:

LEMMA 1.

(a) Any equalizer of a triangle goes through the incenter of the triangle.

(b) A line through the incenter of a triangle is an area splitter if and only if it is a
perimeter splitter.

(c) The equalizers of a triangle are the area splitters through its incenter.

Lines through the incenter Any line � through the incenter I of �ABC splits it into
two regions (FIGURE 1(b)), one of them triangular, say T . Then by Lemma 1, � is an
equalizer exactly when T occupies half of the area � of �ABC. Our plan is to rotate
� around I and spot positions for which � becomes an equalizer by comparing A(T )

with A(ABC)/2 = �/2.
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Figure 2 (a) The area A(AM′N′) increases as � turns towards B. (b) How many equalizers
lie between angle bisectors bB and bC?

As � rotates about the incenter of �ABC and cuts off various triangles, it passes six
important landmarks, as far as area is concerned. These are the three angle bisectors
and the three lines through the incenter that are normal to these bisectors.

Let bA, bB, bC be the bisectors and n A, nB, nC their corresponding normals through
I . For convenience, we will refer to n A as the normal for A, instead of the longer but
more accurate “line through the incenter that is normal to the bisector through A.”
Every line through I , other than these six, lies in a sector delimited by two of them.
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At the risk of spoiling the drama, we reveal that n A can be an equalizer only when
A ≤ 2 arcsin(−1 + √

2), and then only if B is chosen carefully.
It turns out that the area of the triangle cut off, A(T ), has local maxima at the

bisectors and local minima at the normals.

LEMMA 2. For lines � through the incenter I of �ABC, the area A(T ) of the
triangle T cut off from �ABC by � increases as we rotate � from the normal for a
vertex towards the bisector through another vertex.

Proof. For any line � between n A and bB as in FIGURE 2(a), we first show that � cuts
off more area than n A. When we move from n A to � = M ′ N ′, the cut-off triangle gains
�IMM′ and loses �INN ′. Draw MK parallel to AC to cut M ′ I at K and observe that
triangles �IMK and �INN ′ are congruent. The amount of area gained is the difference,
A(�M ′MK) = MM′ · MK · sin(∠M ′MK)/2. As M ′ moves toward B, this extra area
grows larger, so A(T ) increases as claimed.

We now compare �/2 with A(T ) for each of these landmark lines. This allows
us to count the number of equalizers in all regions 〈bi , n j〉 between some bisector
bi from a vertex and the normal n j for another vertex: If for both positions of � we
have A(T ) > �/2, then there can be no equalizer in that region. The same is true
if A(T ) < �/2 for both positions of �. On the other hand, if A(T ) > �/2 for one
position of �, and A(T ) < �/2 for the other, then there exists exactly one position
of � in 〈bi , n j〉 for which A(T ) = �/2, that is, there exists a unique equalizer � in
〈bi , n j 〉.

This area comparison is easy whenever � is a bisector. For example, for the bisector
bA and the two triangles AA′ B, AA′C formed (FIGURE 2(b)), we have

A(AA′ B)

A(AA′C)
= A′ B

A′C
= c

b
.

So c is greater, equal to, or less than b as A(AA′ B) is greater, equal to, or less than
�/2. Thus, a bisector is an equalizer exactly when the two sides by the vertex of the
bisector are equal in length.

As an immediate consequence of all the above we have:

PROPOSITION 1. All equalizers of a triangle ABC go through its incenter, and their
number is analyzed in TABLE 1 where a ≤ b ≤ c, � = A(ABC) and TA is the trian-
gular region cut off from �ABC by the normal line for A.

In particular, Berzenyi’s conjecture is true, that is no triangle can have more than
3 equalizers.

Whenever � is a normal line, the comparison between T and �/2 is much harder.
Assuming without loss of generality that a ≤ b ≤ c as in Proposition 1, we need only
check the case of n A. From now on it will be more convenient to work with angles
rather than with sides and to transform a < b ≤ c to its equivalent A < B ≤ C which
in turn is equivalent to

A ∈ (0, π/3), B ∈ (A, (π − A)/2] (3)

The crucial comparison is given in the following Lemma:

LEMMA 3. Let A0 = 2 arcsin(−1 + √
2)(≈ 48◦56′23′′). Then for all A ∈ (0, A0]

there exists a unique root BA of cot(x/2) tan(A/2 + x/2) cos2(A/2) − 2 = 0 in
(A, (π − A)/2], and BA = (π − A)/2 exactly when A = A0.

If A(ABC) = � is the area of an A < B ≤ C-angled triangle ABC and A(TA) is
the triangular region cut off from the triangle by the normal line of A, then:
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TABLE 1: The number of equalizers of �ABC, (a ≤ b ≤ c) with bisectors bA, bB, bC and
normals nA, nB, nC. By 〈bA, bB〉, we mean the set of lines in the region between bA and
bB that does not contain C or AB, and excluding nC . Similarly, 〈nA, bB〉 is the set of
lines between nA and bB, and so on. The triangle cut off from �ABC by nA is TA and
� = A(ABC).

bisectors normals 〈bB , bC 〉 〈bC , bA〉 〈bA, bB〉 �ABC

0
1 ∈ 〈n A, bB〉

3
0

(if �
2 >A(TA))

1 ∈ 〈n A, bC 〉 1 ∈ 〈nB , bA〉
or

a < b ≤ c

(when b �=c)

1 : n A
0

(when b �=c)

0 2
1 : bA

(if �
2 =A(TA))

0
or(when b=c)

0
0

(when b=c)

1(if �
2 <A(TA))

a = b < c 1 : bC 0 1 ∈ 〈n A, bB〉 0 1 ∈ 〈nC , bB〉 3

a = b = c 3: bA, bB , bC 0 0 0 0 3

(1) If A ∈ (0, A0], then �

2 is greater than, equal to, or less than A(Ta) as the angle B
is less than, equal to, or greater than BA.

(2) If A ∈ (A0, π/3), then
�

2
> A(Ta).

Granted this Lemma, we restate Proposition 1 in terms of angles rather than sides:

PROPOSITION 2. All equalizers of a triangle ABC go through its incenter and
their number is analyzed in TABLE 2, where A ≤ B ≤ C, A0 = 2 arcsin(−1 +√

2) (≈ 48◦56′23′′), and for all A ∈ (0, A0] the number BA is the unique root of
cot(x/2) tan(A/2 + x/2) cos2(A/2) − 2 = 0 in (A, (π − A)/2].

Moreover, all entries except for A < B = C, A = A0, BA < B can occur, and these
are all that can. In particular, Bailey’s conjecture is not true. In other words there exist
triangles with exactly 2 equalizers, one being the normal line corresponding to the
smallest angle.

It only remains to prove Lemma 3. It will pay off to employ a bit of trigonometry
and calculus. To this end:

Note that TA is isosceles with apex A and corresponding attitude AI (FIGURE

2b), so A(TA) = AI 2 tan (A/2). But it is well known (and easy to verify) that AI =
4R sin (B/2) sin (C/2) where R is the circumradius of �ABC. So

A(Ta) = 16R2 sin( A
2 ) sin2( B

2 ) sin2(C
2 )

cos( A
2 )

On the other hand, it is standard knowledge that

� = 2R2 sin(A) sin(B) sin(C),

so

�

2
− A(Ta) = 8R2 sin

(
A
2

)
sin2

(
B
2

)
sin2

(
C
2

)
cos( A

2 )

(
cot

(
B

2

)
cot

(
C

2

)
cos2

(
A

2

)
− 2

)

Since the fraction on the right is positive and C = π − A − B, the sign of
�/2 − A(TA) is that of cot (B/2) tan ((A + B)/2) cos2 (A/2) − 2. Recall that by
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TABLE 2: The number of equalizers of �ABC, (a ≤ b ≤ c) with bisectors bA, bB, bC and
normals nA, nB, nC . By 〈bA, bB〉, we mean the set of lines in the region between bA and
bB that does not contain C or AB, and excluding nC . Similarly, 〈nA, bB〉 is the set of lines
between nA and bB, and so on. The angle A0 is 2 arcsin(−1 + √

2) ≈ 48◦56′23′′ and BA
is the unique root of cot(x/2) tan(A/2 + x/2) cos2(A/2) − 2 = 0 in (A, (π − A)/2].

bs ns 〈bB , bC 〉 〈bC , bA〉 〈bA, bB〉 �ABC

B<BA 0
1 ∈ 〈n A, bB〉

0
1 ∈ 〈n A, bC 〉

1 ∈ 〈nB , bA〉
3

A<B≤C
0<A≤A0

B=BA
(B �=C) 1 : bA 0 (B �=C) 0 2

BA<B 1 : bA
0 0 0 1

A0<A< π
3

(B=C)

0
1 ∈ 〈n A, bB〉 (B=C)

1 ∈ 〈n A, bB〉
3

A=B<C 1 : bC 0 1 ∈ 〈n A, bB〉 0 1∈〈nB ,bA〉 3

A=B=C 3 : all 0 0 0 0 3

(3) A ∈ (0, π/3) and B ∈ (A, (π − A)/2]. Thus for any such A, �/2 − A(TA) has
the same sign as f (B) where f is the following function of the variable B :

f (B) = cot

(
B

2

)
tan

(
A + B

2

)
cos2

(
A

2

)
− 2, B ∈

[
A,

π − A

2

]
.

It is more or less straightforward to determine the sign of f (B). Note first that f is
strictly decreasing since

f ′(B) = − cos2
(

A
2

)
sin

(
A
2

)
cos

(
A
2 + B

)
2 sin2

(
B
2

)
cos2

(
A+B

2

) < 0, for B ∈
[

A,
π − A

2

]
.

Next, notice that the sign of f on the left endpoint A of its domain of definition is
always positive since after some trivial calculations

f (A) = 2
(
cos2

(
A
2

) − 1
)2

cos (A)
> 0. (4)

Similar calculations for the right endpoint (π − A)/2 of the domain give

f

(
π − A

2

)
= sin2

(
A

2

)
+ 2 sin

(
A

2

)
− 1.

The sign of this number can be determined for all A ∈ (0, π/3). Indeed, since
A/2 ∈ (0, π/6), the range of sin(A/2) is the interval (0, 1/2). Now the binomial
g(x) = x2 + 2x − 1 vanishes on its roots, r1 = −1 − √

2 < 0 < r2 = −1 + √
2 <

1/2, is negative between these roots, and positive elsewhere. So f ((π − A)/2) is
negative, zero, or positive depending on whether 0 < sin(A/2) < r2, sin(A/2) = r2,
or r2 < sin(A/2) < 1/2 respectively. If we call A0 the solution of sin(A/2) = r2 =
−1 + √

2 in (0, π/3), so that A0 = 2 arcsin(−1 + √
2), the last result can be summa-

rized as follows:(
f

(
π − A

2

)
<, =, > 0

)
⇔

(
A ∈ (0, A0), A = A0, A ∈

(
A0,

π

3

))
. (5)
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Relations (4) and (5) for the sign of f on the endpoints of its domain of definition,
along with the fact that f is strictly decreasing in this domain [A, (π − A)/2] imply
that:

• If A ∈ (0, A0], there exists a unique root BA of f (B) in (A, (π − A)/2] with
f (B) > 0 for B ∈ (A, BA), and f (B) < 0 for B ∈ (BA, (π − A)/2]. By the way,
clearly BA equals (π − A)/2 exactly when A = A0.

• If A ∈ (A0, π/3), then f (B) > 0 for all B ∈ [A, (π − A)/2].
Finally, from the fact that �/2 − A(TA) and f (B) have the same sign, these state-

ments prove Lemma 3.

Concluding remarks As noted, Bailey’s conjecture is false because the normal line
corresponding to the smallest angle A of a triangle ABC can sometimes be its equalizer.
This happens whenever A is less or equal to A0, and the angle next in size, say B,
assumes a unique value BA. The rarity of such triangles is quite obvious and the lack
of visual evidence, even with the help of a computer sketching program, seems to be
the origin of the conjecture, as the story goes in Quantum.

We now know what kind of triangles exhibit the rare property of possessing ex-
actly two equalizers. Their existence, as well as all other properties mentioned, can be
verified with the help of a program like Geometer’s Sketchpad (within its given com-
putational limitations). We construct triangles ABC on a fixed base BC , a movable
vertex A, a line � through the incenter of �ABC, the normal line n A and the inter-
sections of this line with the sides of �ABC. Then we measure ∠A,A(ABC),A(TA),
and A(T ), where TA, and T are the triangles cut off from �ABC by n A and �. With
this set-up, we can move the vertex A and rotate � around the incenter, monitoring the
values of A(ABC)/2 − A(TA) and A(ABC)/2 − A(T ). A value of 0 means that n A or
� is respectively an equalizer. To satisfy a ≤ b ≤ c we must keep the vertex A outside
the circles centered at B, C with radii equal to BC , and also keep it on the same side
as C of the perpendicular bisector of BC .

One of the surprises is the angle A0 = 2 arcsin(−1 + √
2) ≈ 48◦56′23′′ arising in

connection with the quite symmetric question about the number of equalizers of a
triangle. It is not known to the author if A0 appears elsewhere in the literature with an
equally important role.
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Summary A triangle equalizer is a line bisecting both its area and perimeter. We provide a detailed account
of equalizer locations, showing that there exist triangles with exactly one, two, or three equalizers, but no more.
Triangles with exactly two equalizers are quite rare: Their smallest angle is less or equal to a particular angle of
approximately 49 degrees, and the angle next in size is the unique root of a trigonometric equation in a specific
interval depending on the smallest angle.
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Puzzle Solutions for “Cosets and
Cayley-Sudoku Tables”

In each solution to the problems on p. 138, the original puzzle entries appear in bold
face for easy identification.

Part 1 TABLE 1 shows the solution. Clearly, it satisfies the three Sudoku properties.
We will show it is the Cayley table of D4, the dihedral group of order 8. We will
regard D4 as the group of symmetries of a square. Let R90 be a counterclockwise
rotation about the center of the square and let H be a reflection across a line through
the center of the square that is parallel to a side of the square. The eight elements of
D4 are R0

90, R1
90, R2

90, R3
90, H R0

90, H R1
90, H R2

90, and H R3
90. Numbering those elements

1 through 8 in the order given and then calculating the Cayley table gives TABLE 1.
Thus, we have a Cayley-Sudoku table as claimed. By the way, it was obtained by
applying Construction 1 to the subgroup 〈R90〉.

TABLE 1: Cayley-Sudoku puzzle solution

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
5 5 6 7 8 1 2 3 4

2 2 3 4 1 8 5 6 7
6 6 7 8 5 4 1 2 3

3 3 4 1 2 7 8 5 6
7 7 8 5 6 3 4 1 2

4 4 1 2 3 6 7 8 5
8 8 5 6 7 2 3 4 1

Part 2 TABLE 2 visibly satisfies the Sudoku conditions. It is not a Cayley table. For
otherwise, 1 · 7 = 7 would imply 1 is the identity, but 1 · 2 �= 2.

TABLE 2: Sudoku-not-Cayley puzzle solution

1 2 3 4 5 6 7 8

1 1 3 2 4 5 6 7 8
5 5 7 6 8 1 2 3 4

2 2 4 3 1 8 5 6 7
6 6 8 7 5 4 1 2 3

3 3 1 4 2 7 8 5 6
7 7 5 8 6 3 4 1 2

4 4 2 1 3 6 7 8 5
8 8 6 5 7 2 3 4 1

Math. Mag. 83 (2010) 147–148. doi:10.4169/002557010X482899-s. c© Mathematical Association of America
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Part 3 TABLE 3 does not satisfy the Sudoku conditions. Blocks contain repeated
entries. It is, however, a Cayley table. One can check that it is again the Cayley table
of D4. Just change the labeling of R2

90 from 3 to 5 and of H from 5 to 3. TABLE 3 is
the recalculated Cayley table.

TABLE 3: Cayley-not-Sudoku puzzle solution

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
5 5 4 7 2 1 8 3 6

2 2 5 8 1 4 3 6 7
6 6 7 4 3 8 1 2 5

3 3 6 1 8 7 2 5 4
7 7 8 5 6 3 4 1 2

4 4 1 6 5 2 7 8 3
8 8 3 2 7 6 5 4 1

The First Quickie

Mathematics Magazine, Volume 23, Number 4 (March–April 1950), pp. 210, 211.
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PROPOSALS

To be considered for publication, solutions should be received by September 1,
2010.

1841. Proposed by H. A. ShahAli, Tehran, Iran.

Let n ≥ 3 be a natural number. Prove that there exist n pairwise distinct natural num-
bers such that each of them divides the sum of the remaining n − 1 numbers.

1842. Proposed by Bianca-Teodora Iordache, student, National College “Carol I,”
Craiova, Romania.

In the interior of a square of side-length 3 there are several regular hexagons whose
sum of perimeters is equal to 42 (the hexagons may overlap). Prove that there are two
perpendicular lines such that each one of them intersects at least five of the hexagons.

1843. Proposed by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.

For every positive integer n, let Sn denote the set of permutations of the set Nn =
{1, 2, . . . , n}. For every 1 ≤ j ≤ n, the permutation σ ∈ Sn has a left to right maxi-
mum (LRM) at position j , if σ(i) < σ( j) whenever i < j . Note that all σ ∈ Sn have
a LRM at position 1. Let M be a subset of Nn. Prove that the number of permutations
in Sn with LRMs at exactly the positions in M is equal to

∏
k∈Nn\M

(k − 1),

where an empty product is equal to 1.

Math. Mag. 83 (2010) 149–153. doi:10.4169/002557010X482925. c© Mathematical Association of America
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1844. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania.

Let ABC be a triangle with a = BC , b = AC , and c = AB. Prove that

a2 + b2 + c2

2 · Area(ABC)
≥ sec

A

2
+ sec

B

2
+ sec

C

2
.

1845. Proposed by Albert F. S. Wong, Temasek Polytechnic, Singapore.

Evaluate ∫ 1

0

{
1

x

}2

dx,

where {α} = α − �α� denotes the fractional part of α.

Quickies

Answers to the Quickies are on page 153.

Q999. Proposed by Hongbiao Zeng, Fort Hays State University, Hays, KS.

Let ABC be a triangle and O its circumcenter. Suppose that O and A are on the same
side of BC . Prove that if Area(ABC) = 2 · Area(OBC), then �ABC is a right triangle.

Q1000. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Let D be an open and connected subset of C and let f and g be continuous complex-
valued functions defined on D such that f (z)g(z) = 0 and | f (z)| + |g(z)| 	= 0 for all
z in D. Show that either f or g is identically zero on D.

Solutions

A trigonometric identity for the square root triangle April 2009

1816. Proposed by Mehmet Sahin, Ankara University of Science, Ankara, Turkey.

Let ABC be a triangle with a = BC , b = C A, and c = AB. Let A′ B ′C ′ be another
triangle with B ′C ′ = √

a, C ′ A′ = √
b, and A′ B ′ = √

c. Prove that

sin

(
1

2
A

)
sin

(
1

2
B

)
sin

(
1

2
C

)
= cos A′ cos B ′ cos C ′.

Solution by Philip Benjamin, Middlesex County College, Edison, NJ.
We require two formulas, the half-angle formula for the sine function: sin(t/2) =√
(1 − cos t)/2 for 0 ≤ t ≤ 2π , and the law of cosines: cos A = (b2 + c2 − a2)/(2bc).

In triangle ABC,

sin

(
1

2
A

)
=

√
1 − cos A

2
=

√
2bc − b2 − c2 + a2

4bc
=

√
(a − b + c) (a + b − c)

4bc

with similar formulas for the other angles of triangle ABC. Thus

sin

(
1

2
A

)
sin

(
1

2
B

)
sin

(
1

2
C

)
= (a + b − c)(a − b + c)(−a + b + c)

8abc
.
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In triangle A′ B ′C ′, the law of cosines gives cos A′ = (b + c − a)/(2
√

bc) with similar
formulas for the other angles of A′ B ′C ′. Thus

cos A′ cos B ′ cos C ′ = (a + b − c)(a − b + c)(−a + b + c)

8abc

and the identity is proved.
Also solved by Tamin Alkhonaini; Armstrong Problem Solvers; Herb Bailey; Michel Bataille (France);

J. C. Binz (Switzerland); Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia); Stan Byrd and Ossama
A. Saleh; Robert Calcaterra; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie; Minh Can; Michael
J. Caulfield; The Constant Math Party; Tim Cross (United Kingdom); Robert D. Crise; Chip Curtis; Ranjan
Dahal; Daniele Degiorgi (Switzerland); M. J. Englefield (Australia); John Ferdinands; Dimitri Fleischman; Ja-
son Fornkohl; Rohollah Garmanjani (Portugal); Leon Gerber; David Getling (Germany); Michael Goldenberg
and Mark Kaplan; James R. Henderson; Eugene A. Herman; John G. Heuver (Canada); Brian Hogan; Peter
Hohler (Switzerland); Joel Iiams; Tom Jager; Bradley Jones; Young Ho Kim (Korea); Victor Y. Kutsenok; Harris
Kwong; David P. Lang; Kee-Wai Lau; Kim McInturff; William McNeary; James Meyer; Ruthven Murgatroyd;
Shoeleh Mutameni; Daniel Narrias-Villar (Chile); Northwestern University Math Problem solving Group; Peter
Nüesch (Switzerland); J. Oelschlager; Jennifer Pajda; Éric Pité (France); Cosmin Pohoata (Romania); Xavier
Retnam; Joel Schlosberg; Mark H. Schultz; C. R. Selvaraj and Suguna Selvaraj; Raul A. Simon (Chile); Nicholas
C. Singer; Earl A. Smith; Albert Stadler (Switzerland); John Sumner and Aida Kadic-Galeb; James Swenson;
Marian Tetiva (Romania); R. S. Tiberio; Dave Trautman; Anibal Velozo (Chile); Michael Vowe (Switzerland);
G. Gerard Wojnar; John. B. Zacharias; and the proposer.

Fibonaccis and game scores April 2009

1817. Proposed by Marcos Donnantouni, La Plata, Argentina and José Nieto, Mara-
caibo, Estado Zulia, Venezuela.

A TV game show has a format in which contestants are asked questions and give
answers. Each contestant starts with a score of 0 points. A contestant’s score is then
calculated as follows: after giving a correct answer, the score is increased by 1; after a
wrong answer the score is divided by 2. If a contestant responds to n questions, how
many different scores are possible? (As an example, for n = 3 there are seven possible
scores : 0, 1

4 , 1
2 , 1, 3

2 , 2, and 3.)

Solution by Benjamin V. C. Collins and James Swenson, University of Wisconsin-
Platteville, Platteville, WI.

There are Fn+3 − 1 possible scores after n questions, where (F0, F1, . . . ) =
(0, 1, . . . ) is the Fibonacci sequence.

Encode the contestant’s responses by a word a = a1a2 . . . an , where ak = R if the
kth question is answered correctly, and ak = W otherwise. For any words a and b, we
claim that the words aRRWb and WaWRb have the same length and yield the same
score for the contestants. To see this, suppose that the word a yields score x . Then
aRRW yields x+2

2 , while WaWR yields x
2 + 1; this proves the claim.

By induction, if the score x can be achieved, then it can be achieved by a word
that does not contain RRW as a subword. Such a word is called nice; it is of
the form (

∏k
i=1 Rεi W )R j , where each εi ∈ {0, 1} and j, k ≥ 0. Because the word

(
∏k

i=1 Rεi W )R j yields the score (
∑k

i=1 εi · 2i−1−k) + j , it follows that no two nice
words yield the same score. Hence possible scores are in one-to-one correspondence
with nice words.

The word (
∏k

i=1 Rεi W )R j contains k letters W and j + ∑k
i=1 εk letters R, so there

are exactly n − k − j of the εi equal to 1; this means that there are
( k

n−k− j

)
nice words

of length n containing k letters W and ending with R j . Altogether there are

n∑
k=0

n−k∑
j=0

(
k

n − k − j

)
=

n∑
k=0

k∑
j=0

(
k − j

j

)
=

n∑
k=0

Fk+1 = Fn+3 − 1

nice words of length n.
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Also solved by Michael Abram, Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Aus-
tralia), Robert Calcaterra, John Christopher, G.R.A.20 Problem Solving Group (Italy), Joel Iiams, Tom Jager,
Omran Kouba (Syria), Lafayette College Problem Group, Jacob Richey, Albert Stadler (Switzerland), John Sum-
ner and Aida Kadic-Galeb, Marian Tetiva (Romania), Dave Trautman, Todd G. Will, and the proposers. There
were three incomplete solutions.

Counting two different ways April 2009

1818. Proposed by Cosmin Pohoata, Tudor Vianu National College of Informatics,
Bucharest, Romania.

Let n, k, i, i1, i2, . . . , ik be positive integers with n ≥ i = i1 + i2 + · · · + ik . Prove that
2n−i is a factor of

n∑
j=0

((
n

j

) k∏
r=1

(
j

ir

))
.

Solution by Timothy Woodcock, Stonehill College, Easton, MA.
The expression counts the set of all (k + 1)-tuples t = (S, A1, . . . , Ak) where S is

a j-element subset of N = {1, . . . , n}, and for 1 ≤ r ≤ k, Ar is an ir -element subset
of S.

We may also construct a general t by first forming u = (A1, . . . , Ak), where each
Ar is an ir -element subset of N , and then require S ⊇ ∪k

r=1 Ar . Letting |u| denote the
cardinality of the union, there are 2n−|u| subsets of N \ ∪k

r=1 Ar that can be joined to
∪k

r=1 Ar to form a suitable set S. Thus the total number of possibilities for t is equal to∑
u 2n−|u|. But for any u, |u| ≤ i1 + · · · + ik = i , so 2n−i divides 2n−|u|.
Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert

Calcaterra, G.R.A.20 Problem Solving Group (Italy), Santhosh Karnik, Omran Kouba (Syria), Northwestern
University Math Problem Solving Group, Albert Stadler (Switzerland), John Sumner and Aida Kadic-Galeb,
Marian Tetiva (Romania), and the proposer. There was a solution with no name.

Irreducibility of x in Zm[x] April 2009

1819. Proposed by Jody M. Lockhart and William P. Wardlaw, U.S. Naval Academy,
Annapolis, MD.

An element a of a ring R is reducible in R if there are elements b and c in R, neither of
which are units in R, such that a = bc. If a is not reducible then we say a is irreducible.
For each integer m > 1, let Zm[x] denote the ring of polynomials over the ring Zm

of integers modulo m. For which integers m > 1 is the polynomial x irreducible in
Zm[x]?
Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI.

The answer is the numbers m that are prime powers. Suppose m = pk with p
prime and k ≥ 1, and suppose that there are polynomials f (x), g(x) ∈ Zm[x] such
that f (x)g(x) = x . Let the coefficients of the polynomials be given by

f (x) = fi x
i + · · · + f1x + f0 and g(x) = g j x

j + · · · + g1x + g0.

Then f1g0 + f0g1 = 1 and f0g0 = 0. The second equation implies that either f0 and
g0 are both powers of p or one of them is 0. But if they are both powers of p, then
the first equation becomes impossible modulo m. Thus one of f0 or g0 is 0. Suppose
that f0 = 0. Then f (x)/x is a polynomial in Zm[x] and it follows from the equation
( f (x)/x)g(x) = 1 that g(x) is a unit. This proves that x is irreducible.
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Conversely, suppose m = ab with a and b relatively prime and both greater than
1. Then in Zm[x], (ax + b)(bx + a) = (a2 + b2)x . The numbers a2 + b2 and ab are
relatively prime whenever a and b are, so a2 + b2 has an inverse c in Zm . It follows
that (cax + cb)(bx + a) = x . Neither cax + cb nor bx + a are units in Zm[x] because
otherwise a or b would be a unit in Zm , contradicting the fact that they are both zero-
divisors in Zm . Thus x is reducible.

Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert
Calcaterra, Thomas Craven, Jim Delany, Robert L. Doucette, John Ferdinands, Florida Southern College Mod-
ern Algebra Class, Joel Haack, Joel Iiams, Tom Jager, David P. Lang, Rick Mabry, Vadim Ponomarenko, Joel
Schlosberg, Nicholas C. Singer, Alin A. Stancu and Andrew S. Wilson, John Sumner and Aida Kadic-Galeb,
James Swenson, Bob Tomper, Naveed Zaman, and the proposers. There were five incorrect submissions.

Zero trace implies zero product April 2009

1820. Proposed by Christopher J. Hillar, Texas A&M University, College Station, TX.

A real positive semidefinite matrix is a symmetric matrix with all eigenvalues non-
negative. Prove that if P and Q are real positive semidefinite n × n matrices with
tr(P Q) = 0, then P Q = 0.

Solution by Cosmin Pohoata, Bucharest, Romania.
By the Cholesky Decomposition Theorem, the positive semidefinite matrices P and

Q can be written as P = X X t and Q = Y Y t , where X and Y are real-valued matrices.
Thus,

0 = tr(P Q) = tr(X X tY Y t) = tr(Y t X X t Y ) = tr [(Y t X)(Y t X)t ] = tr(AAt),

where A = Y t X . Because A = (ai j ) has real entries and tr(AAt) = ∑
i, j a2

i j = 0, it

follows that A = 0. Hence At = (
Y t X

)t = X t Y = 0 and P Q = X X t Y Y t = 0.

Also solved by Oskar M. Baksalary (Poland) and Götz Trenkler (Germany), Michel Bataille (France), Elton
Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Paul Budney, Robert Calcaterra, Chip Curtis, Michael J.
Englefield (Australia), Michael Goldenberg and Mark Kaplan, Eugene A. Herman, Tom Jager, Omran Kouba
(Syria), Éric Pité (France), and the proposer. There was one incorrect submission.

Answers

Solutions to the Quickies from page 150.

A999. Let M be the midpoint of AB, � the line parallel to BC through M , and �′
the perpendicular bisector of AB. Because O and A are on the same side of BC and
Area(ABC) = 2 · Area(OBC), it follows that O is in �. If O = M , then ABC is a
triangle with right angle at C . Otherwise, since both O and M are in � and �′, it
follows that � = �′ and so AB is perpendicular to BC , that is, ABC is a triangle with
right angle at B.

A1000. Let S f = {z ∈ D : f (z) 	= 0} and Sg = {z ∈ D : g(z) 	= 0}. Because f is
continuous, it follows that D \ S f = f −1({0}) is a closed set, so S f is an open set.
Similarly Sg is an open set. The conditions on D imply that for all z in D, f (z) =
0 if and only if g(z) 	= 0. Therefore D = S f ∪ Sg and S f ∩ Sg = ∅. Because D is
connected, it follows that S f = ∅ or Sg = ∅, that is, either f or g is identically zero
on D.



R E V I E W S

PAUL J. CAMPBELL, Editor
Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are
selected for this section to call attention to interesting mathematical exposition that occurs out-
side the mainstream of mathematics literature. Readers are invited to suggest items for review
to the editors.

Carter, Nathan, Visual Group Theory, MAA, 2009; xiii + 297 pp, $71.95 (member price:
$57.50). ISBN 978-0-88385-757-1. Accompanying free graphing software: GroupExplorer
2.2, for Windows XP, Mac OS X, and Linux. http://groupexplorer.sourceforge.net/.

This is a beautiful book, with magnificent color illustrations. It “teaches you to know groups,”
through admirably many examples of Cayley diagrams, multiplication tables, and other dia-
grams, focussing mainly on finite groups. Its aim is not to present the theorems and proofs of
group theory but to equip intuition with a stock of examples and teach “how to make conjectures
about groups and prove or refute them.” The exercises bear out the purpose; most ask the reader
to investigate a conjecture, few ask for proofs. A group is first defined as a collection of actions
and only later as a set with a binary operation. Topics include subgroups, products, quotients,
homomorphisms, Sylow theory, and Galois theory; rings are not mentioned. The book opens
with a discussion of the moves in Rubik’s Cube but never returns to it; commutators, the key
to solving the Cube, are defined only in an exercise late in the book, without mention of their
use with the Cube. However, the author is right to claim that this is an ideal book for a stu-
dent beginning to learn about groups. It could also serve for an “abstract algebra light” course,
perhaps even for students who do not intend to become mathematics majors but who sincerely
want to learn how mathematicians think, are curious how mathematics is not necessarily about
numbers, and can put up with a little symbolism and reasoning as they explore.

Erlich, Yaniv, Kenneth Chang, Assaf Gordon, Roy Ronen, Oron Navon, Michelle Rooks, and
Gregory J. Hannon, DNA Sudoku: Harnessing high-throughput sequencing for multiplexed
specimen analysis, Genome Research 19 (2009) 1243–1253, http://genome.cshlp.org/
content/early/2009/05/15/gr.092957.109.full.pdf+html; mathematical supplement
at http://genome.cshlp.org/content/early/2009/05/15/gr.092957.109/suppl/DC1.
CSHL scientists harness logic of “Sudoku” math puzzle to vastly enhance genome-sequencing
capability (press release), http://www.cshl.edu/public/releases/09_sudoku.html.

DNA-sequencing machines can analyze DNA from many different specimens simultaneously;
the trick is to match each sequence back to its specimen. Rather than assign an identifying
code to each specimen, the authors group specimens into overlapping pools and tag the pools.
The authors choose the number of pools, and the numbers of pools in which each specimen
occurs, so as to minimize costs while maximizing probability of correct matching. They have
applied the method to 40,000 bacterial clones using 384 pools. The major mathematical tool that
allows recovery of the matching information is the Chinese remainder theorem from number
theory. “Many elements of this approach were reminiscent of seeking the solution to a Sudoku
puzzle, which led us to dub this strategy ‘DNA Sudoku.’” There may be no direct connection
to methods for solving Sudoku puzzles, but the authors have given a catchy name to a useful
method employing mathematics from number theory.

Math. Mag. 83 (2010) 154–155. doi:10.4169/002557010X492735. c© Mathematical Association of America
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Blackburn, Simon R., The geometry of perfect parking, http://personal.rhul.ac.uk/uhah/
058/perfect_parking.pdf . Devlin, Keith, The formula for perfect parallel parking, http:
//www.npr.org/templates/story/story.php?storyId=122880263 . Devlin, Keith, Is math
a socialist plot?, http://www.maa.org/devlin/devlin_02_10.html.

How long does a parking space have to be for you to park? Author Blackburn uses the
Pythagorean theorem to answer; and in a recent appearance on National Public Radio (NPR),
Devlin talked about Blackburn’s paper. That might have been the end of it, except for responses
at the NPR Website. As Devlin notes in his teaser-titled column, a science story must cite an
application—despite no such demand for “sports, music, movies, entertainment and the arts,
none of which are ‘good for anything’ in the sense that science stories are supposed to live
up to.” Indeed, his original radio piece cited automated parking (already a reality on some
car models); but that mention was cut from the broadcast. Absent mention of any application,
respondents wrote “I don’t need a math formula to tell me how to park,” and “This kind of
research is a waste of time.” Devlin’s conclusion: They thought they were supposed to put num-
bers into the formula “and work out the answer,” a conviction bred from the phony examples
that pass as real-life applications in textbooks. Devlin makes the crucial point that “no one
uses mathematical formulas in their day-to-day life. . . . [t]hese days, it’s not people who ‘do
the math,’ it’s the various devices we buy, use, and carry around with us.” He pleads, “don’t
use unrealistic, fake scenarios and tell the students they are seeing ‘How math is really used.’”
He claims that the discussants (and by extension, most adults) “are rooted [in] their belief that
math is something you do at school to solve irrelevant problems but is of no use in the real
world. . . [they] have absolutely no idea how mathematics is used in today’s world. . . . They
don’t even know what it is or what it is used for.” Moreover, “they have formed this belief after
having had at least ten years of almost daily mathematics instruction. . . [Devlin’s emphasis].”
That is a damning indictment of mathematics education! From your experience, is it true?

Bressoud, David M., The rocky transition from high-school calculus, Chronicle of Higher Edu-
cation (22 January 2010) A80, http://chronicle.texterity.com/chronicle/20100122a/
?pg=80.

Bressoud, President of the MAA, has written several times in Focus about trends in calculus and
what we should teach students who had some calculus in high school. Here, based on statistics,
he describes Advanced Placement (AP) calculus as “not a steppingstone but a stumbling block.”
Of high school students entering college in 2008, 11% had taken an AP calculus exam and al-
most 20% had had a calculus course in high school. That sounds fine, except that the increasing
numbers of students taking calculus in high school over the past 15 years has been accompa-
nied by a decrease in students taking Calculus II in college (except at research universities, with
their engineering schools). Why so? Pedagogy? Pushing underprepared students prematurely
into calculus? Misalignment of the AP syllabus with college calculus? Focus in high school
courses on imitating algorithms rather than on understanding? We don’t know, and Bressoud
urges us to find out. He also urges a redesign of college Calculus I to be a general overview,
including emphasizing why calculus is important and what it is good for. [My perspective: 1.
Students take AP calculus for the same reasons as other AP courses (status, competitive edge to
get ahead into college, maybe save a semester of college tuition); so expansion of high school
offering of calculus has roped in the marginally mathematically motivated. 2. College science
and business departments minimize the mathematics required of majors, because some potential
majors shy away from mathematics or can’t get high grades in mathematics courses (in this era
of grade inflation, we grade low). “Early transcendentals” Calculus I—derivatives and integrals
of trigonometric, exponential, and logarithmic functions in Calculus I instead of Calculus II—
lets departments absolve their majors of taking Calculus II. 3. Departments that require calculus
(or other mathematics) for their majors don’t make it a prerequisite for any of their courses, thus
illustrating that they consider the mathematics slightly desirable but basically inessential.]
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Problems

1. Given circles ω1 and ω2 intersecting at points X and Y , let �1 be a line through the
center of ω1 intersecting ω2 at points P and Q and let �2 be a line through the center of
ω2 intersecting ω1 at points R and S. Prove that if P , Q, R and S lie on a circle then
the center of this circle lies on line XY .

2. Let n be a positive integer. Determine the size of the largest subset of

{−n,−n + 1, . . . , n − 1, n}
which does not contain three elements a, b, c (not necessarily distinct) satisfying a +
b + c = 0.

3. We define a chessboard polygon to be a polygon whose edges are situated along lines
of the form x = a or y = b, where a and b are integers. These lines divide the interior
into unit squares, which are shaded alternately grey and white so that adjacent squares
have different colors. To tile a chessboard polygon by dominoes is to exactly cover
the polygon by non-overlapping 1 × 2 rectangles. Finally, a tasteful tiling is one which
avoids the two configurations of dominoes shown on the left below. Two tilings of a
3 × 4 rectangle are shown; the first one is tasteful, while the second is not, due to the
vertical dominoes in the upper right corner.

Distasteful tilings

(a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be
done so tastefully.

(b) Prove that such a tasteful tiling is unique.
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4. For n ≥ 2 let a1, a2, . . . , an be positive real numbers such that

(a1 + a2 + · · · + an)

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≤

(
n + 1

2

)2

.

Prove that max(a1, a2, . . . , an) ≤ 4 min(a1, a2, . . . , an).

5. Trapezoid ABC D, with AB ‖ C D, is inscribed in circle ω and point G lies inside
triangle BC D. Rays AG and BG meet ω again at points P and Q, respectively. Let the
line through G parallel to AB intersect B D and BC at points R and S, respectively.
Prove that quadrilateral PQRS is cyclic if and only if BG bisects � CBD.

6. Let s1, s2, s3, . . . be an infinite, nonconstant sequence of rational numbers, meaning it
is not the case that s1 = s2 = s3 = . . . . Suppose that t1, t2, t3, . . . is also an infinite,
nonconstant sequence of rational numbers with the property that (si − s j )(ti − t j ) is an
integer for all i and j . Prove that there exists a rational number r such that (si − s j )r
and (ti − t j )/r are integers for all i and j .

Solutions Following are the essential ideas for each problem. For interested readers,
detailed solutions with figures and multiple approaches developed by the USAMO Com-
mittee are at the website of the MAA American Mathematics Competitions: http://www.
unl.edu/amc/e-exams/e8-usamo/archiveusamo.shtml.

1. Let ω denote the circumcircle of P, Q, R, S and let O denote the center of ω. The XY
is the radical axis of circles ω1 and ω2. Then show that O has equal power to the two
circles using that �1 ⊥ O O2.

This problem was suggested by Ian Le. The solution was contributed by Zuming
Feng.

2. The maximum size is n if n is even, and n + 1 if n is odd, achieved by the subset
{
−n, . . . ,−

⌊n

2

⌋
− 1,

⌊n

2

⌋
+ 1, . . . , n

}
.

This problem was suggested by Kiran Kedlaya with Tewodros Amdeberhan.

3. Prove the first part by induction on the number n of dominoes in the tiling.
Suppose now that there are two tasteful tilings of a given chessboard polygon. By

overlaying these two tilings obtain chains of overlapping dominoes, since every square
is part of one domino from each tiling. For example, a chain of length one indicates
a domino common to both tilings. A chain of length two cannot occur, since these
arise when a 2 × 2 block is covered by horizontal dominoes in one tiling and vertical
dominoes in the other, and one of these configurations will be distasteful. Since the
tilings are distinct a chain of length three or more must occur; let R be the region
consisting of such a chain along with its interior, if any. Argue that the chain must
include a horizontal domino along its lowermost row having a white square on the left.
Now focus on the tiling that includes this WB domino.

The two squares above the WB domino must be part of region R. Deduce the ex-
istence of a horizontal WB domino on the next row up. Repeat this argument until
reaching a horizontal WB domino in region R for which the two squares immediately
above it are not both in region R. Show that this is impossible, so two tasteful tilings
are not possible.

This problem was suggested by Sam Vandervelde.

4. Let m = min(a1, a2, . . . , an) and M = max(a1, a2, . . . , an). Without loss of generality,
a1 = m and an = M . Then n = 2 case follows immediately. For n ≥ 3 use the Cauchy-
Schwarz Inequality and reduce to the n = 2 case. This problem was suggested by Titu
Andreescu.
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5. First prove the “if” part. Let rays CG and DG meet ω again at E and F , respectively.
Let R1 denote the intersection of segments B D and Q E , and let S1 denote the intersec-
tion of segments BC and Q F . Applying Pascal’s theorem to cyclic hexagon BDFQEC
to show R1, G, S1 are collinear. Deduce that EBGR1 is cyclic. Use that EBGR1 and
EBCD are cyclic to show PQRS is cyclic.

Prove the “only if” part by letting γ denote the circumcircle of PQRS. Then approach
indirectly by assuming that ray BG does not bisect � CBD and show a contradiction.

This problem was suggested by Zuming Feng.

6. For p a prime, define the p-adic norm ‖ · ‖p on rational numbers as follows: for r �= 0,
‖r‖p is the unique integer n for which we can write r = pna/b with a, b integers not
divisible by p. (By convention, ‖0‖p = +∞.) Repeatedly use the easy to prove fact that
for any rational numbers r1, r2, we have ‖r1 ± r2‖p ≥ min(‖r1‖p, ‖r2‖p), with equality
whenever ‖r1‖p �= ‖r2‖p . The condition of the problem implies that

‖si − s j‖p ≥ −‖ti − t j‖p

for all i, j and all prime p. Then show that in fact

‖si − s j‖p ≥ −‖tk − tl‖p

for all i, j, k, l and all prime p. Now for each prime p, define the integer f (p) =
mini, j ‖si − s j‖p . The function f (p) is well-defined and f (p) = 0 for all but finitely
many primes. Finally, show that r = ∏

p p− f (p), where the product is over all primes.
This problem was suggested by Gabriel Carroll. The solution was suggested by

Lenhard Ng.

2009 Olympiad Results The top twelve students on the 2009 USAMO were (in alpha-
betical order):

John Berman 12 John T. Hoggard School Wilmington NC
Sergei Bernstein 12 Belmont High School Belmont MA
Wenyu Cao 10 Phillips Academy Andover MA
Robin Chen 12 Pinetree Secondary School Coquitlam BC
Vlad Firiou 10 Westford Academy Westford MA
Eric Larson 12 South Eugene High School Eugene OR
Delong Meng 12 Baton Rouge Magnet High School Baton Rouge LA
Qinxuan Pan 12 Thomas S. Wooten High School Rockville MD
Panupong Pasupat 12 Deerfield Academy Deerfield MA
Toan Phan 11 Taft School Watertown CT
David Rush 12 Phillips Exeter Academy Exeter NH
David Yang 8 Homeschool Walnut CA

Wenyu Cao was the winner of the Samuel Greitzer-Murray Klamkin Award, given to the
top scorer on the USAMO. Wenyu was also awarded a college scholarship of $20,000 by
the Akamai Foundation. Toan Phan was awarded a scholarship of $15,000 by the Akamai
Foundation for second place. Qinxuan Pan won third place and was awarded a scholarship
of $10,000 by the Akamai Foundation. All 12 students received a $1,000 Robert P. Balles
Award in the form of a savings bond.

The citation for a solution of outstanding elegance was presented to Evan O’Dorney for
his solution on Problem 6. O’Dorney’s solution converts the hypotheses of the problem into
statements about products of polynomials, and then the conclusion follows from showing
that the intersection of a chain of sets is non-empty by using routine facts about coefficients
of irreducible polynomials.



That student is taught the best who is 
told the least.

—R. L. Moore, 1966

The Moore Method: A Pathway to Learner-Centered Instruction offers a 
practical overview of the method as practiced by the four co-authors, 
serving as both a “how to” manual for implementing the method and 
an answer to the question, “what is the Moore method.  Moore is well 
known as creator of The Moore Method (no textbooks, no lectures, no 
conferring) in which there is a current and growing revival of interest and 
modified application under inquiry-based learning projects.  Beginning 
with Moore’s Method as practiced by Moore himself, the authors proceed 
to present their own broader definitions of the method before addressing 
specific details and mechanics of their individual implementations.  Each 
chapter consists of four essays, one by each author, introduced with the 
commonality of the authors’ writings.  

Topics include the culture the authors strive to establish in the classroom, 
their grading methods, the development of materials and typical days 
in the classroom.  Appendices include sample tests, sample notes, and 
diaries of individual courses. With more than 130 references supporting 
the themes of the book the work provides ample additional reading 
supporting the transition to learner-centered methods of instruction.

The Moore Method: A Pathway 
to Learner-Centered Instruction

Catalog Code:  NTE-75
260 pp., Paperbound, 2009, 

ISBN: 978-0-88385-185-2
List:  $57.50  MAA Member:  $47.50

Charles A. Coppin, Ted Mahavier, E. Lee May, 
and Edgar Parker, Editors

To order call 1-800-331-1622 or visit us online at www.maa.org

New title from the MAA



As a robust repertoire of examples is essential for students 
to learn the practice of mathematics, so a mental library of 
counterexamples is critical for students to grasp the logic of 
mathematics.  Counterexamples are tools that reveal incor-
rect beliefs.  Without such tools, learners’ natural misconcep-
tions gradually harden into convictions that seriously impede 
further learning.  This slim volume brings the power of coun-
terexamples to bear on one of the largest and most important 
courses in the mathematics curriculum.
—Professor Lynn Arthur Steen, St. Olaf College, Minnesota, 
USA, Co-author of Counterexamples in Topology

Counterexamples in Calculus
Sergiy Klymchuk

Order your copy today!
1.800.331.1622          www.maa.org

Catalog Code: CXC
101pp., Paperbound, 2010
ISBN:  978-0-88385-756-6
List:  $45.95   
MAA Member:  $35.95

Counterexamples in Calculus serves as a supplementary resource to en-
hance the learning experience in single variable calculus courses. This 
book features carefully constructed incorrect mathematical statements 
that require students to create counterexamples to disprove them. Methods 
of producing these incorrect statements vary. At times the converse of a 
well-known theorem is presented. In other instances crucial conditions are 

-
ments are grouped topically with sections devoted to: Functions, Limits, 
Continuity, Differential Calculus and Integral Calculus. 

using counterexamples as a pedagogical tool in the study of introductory 
calculus. In that light it may well be useful for

New title by the MAA



New from the MAA

Voltaire’s Riddle:
Micromégas and the Measure of All Things

Andrew Simoson

the legend of Isaac Newton discovering gravity 

wrote Micromégas

measurements of the very small to the very large, 

Catalog Code:  DOL-39    
ISBN: 9780-88385-345-0

Hardbound, 2010
List:  $58.95   

MAA Member:  $47.95

To order visit us online at www.maa.org or call 1-800-331-1622.
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